精英家教网 > 初中数学 > 题目详情
9.自实施《深圳市生活垃圾分类和减量管理办法》以来,深圳生活垃圾分类和减量工作取得了一定的成效,环保部门为了提高宣传实效,随机抽样调查了100户居民8月的生活垃圾量,并绘制成不完整的频数分布直方图,(如图1),并将他们的垃圾分类情况绘制成不完整的扇形统计图,请你根据图中的信息解答下列问题:
(1)请将条形统计图1补充完整;
(2)图2的扇形统计图中,表示“有害垃圾C”所在扇形的圆心角度数为10.8度;
(3)根据统计,8月所抽查的居民产生的生活垃圾总量约为2750kg,则其中为可回收的垃圾约为1320kg.

分析 (1)根据频数之和等于总数求得40~50的频数即可补全图形;
(2)先根据百分比之和为1求得C的百分比,再乘以360°可得;
(3)将垃圾总量乘以可回收垃圾所占百分比即可得.

解答 解:(1)由条形图可知40~50的频数为100-(5+15+40+10)=30,如图所示,


(2)“有害垃圾C”所占的百分比为1-(48%+32%+17%)=3%,
∴表示“有害垃圾C”所在扇形的圆心角度数为360°×3%=10.8°,
故答案为:10.8;

(3)∵2750×48%=1320(kg),
∴可回收的垃圾约为1320kg,
故答案为:1320.

点评 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,掌握频数之和等于总数、百分比之和为1是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,当n=2时,所需的纸片张数为11张;
(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,直线y=$\frac{\sqrt{3}}{3}x$+1和x轴、y轴分别交于点A、B.若以线段AB为边作等边三角形ABC,则点C的坐标是($\sqrt{3}$,2)或(0,-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,△ABC中,∠BAC=45°,过A、B两点的⊙O交AC于点D,且OD∥BC,OD交AB于点E.
(1)求证:BC是⊙O的切线;
(2)若∠OEB=60°,求AD:CD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在平面直角坐标系中,点A在抛物线y=x2-2x+3上运动,过点A作AB⊥x轴于点B,以AB为斜边作Rt△ABC,则AB边上的中线CD的最小值为1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在方格纸中,点A、B、C是三个格点(网格线的交点叫做格点)
(1)过点C画AB的垂线,垂足为D;
(2)将点D沿BC翻折,得到点E,作直线CE;
(3)直线CE与直线AB的位置关系是平行;
(4)判断:∠ACB>∠ACE.(填“>”、“<”或“=”

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:(2x+1)2-x(5+2x)+(2+x)(2-x),其中x2-x=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在线段BF上,有点E、C,BE=CF,∠B=∠F,∠ACB=∠DEF.
(1)证明:△ABC≌△DFE;
(2)这个图形是否轴对称图形,如果是,用虚线在图中画出它的对称轴.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若函数y=x-a(a为常数)与函数y=-2x+b(b为常数)的图象的交点坐标是(2,1),则关于x、y的二元一次方程组$\left\{\begin{array}{l}{x-y=a}\\{2x+y=b}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$.

查看答案和解析>>

同步练习册答案