精英家教网 > 初中数学 > 题目详情

【题目】附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

【答案】1

【解析】试题分析:通过已知等式化简得到未知量的关系,代入目标式子求值.

试题解析:

解:∵(y﹣z)2+x﹣y2+z﹣x2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

(y﹣z)2﹣(y+z﹣2x2+x﹣y2﹣(x+y﹣2z2+z﹣x2﹣(z+x﹣2y2=0,

y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,

2x2+2y2+2z22xy﹣2xz﹣2yz=0,

x﹣y2+x﹣z2+y﹣z2=0.

∵x,y,z均为实数

x=y=z.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】两条平行直线上各有个点,用这个点按如下规则连接线段:

①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;

②符合①要求的线段必须全部画出.

展示了当时的情况,此时图中三角形的个数为;图展示了当时的一种情况,此时图中三角形的个数为.试回答下列问题:

时,请在图中画出使三角形个数最少的图形,此时图中三角形的个数是________

试猜想当有对点时,按上述规则画出的图形中,最少有________个三角形;

时,按上述规则画出的图形中,最少有________个三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知RtABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径长等于CA的扇形CEF绕点C旋转,直线CE、CF分别与直线AB交于点M、N.

(1)如图①,当AM=BN时,将△ACM沿CM折叠,点A落在弧EF的中点P处,再将△BCN沿CN折叠,点B也恰好落在点P处,此时,PM=AM,PN=BN,PMN的形状是   .线段AM、BN、MN之间的数量关系是  

(2)如图②,当扇形CEF绕点C在∠ACB内部旋转时,线段MN、AM、BN之间的数量关系是   .试证明你的猜想;

(3)当扇形CEF绕点C旋转至图③的位置时,线段MN、AM、BN之间的数量关系是   .(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).

(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;

(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,且ABCDEFAD上两点,CEADBFAD.若CEaBFbEFc,则AD的长为(

A. a+cB. b+cC. ab+cD. a+bc

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的边AB在x轴上,∠ABC=90°,AB=BC,OA=1,OB=4,抛物线y=x2+bx+c经过A、C两点.

(1)求抛物线的解析式及其顶点坐标;
(2)如图①,点P是抛物线上位于x轴下方的一点,点Q与点P关于抛物线的对称轴对称,过点P,Q分别向x轴作垂线,垂足为点D,E,记矩形DPQE的周长为d,求d的最大值,并求出使d最大值时点P的坐标;
(3)如图②,点M是抛物线上位于直线AC下方的一点,过点M作MF⊥AC于点F,连接MC,作MN∥BC交直线AC于点N,若MN将△MFC的面积分成2:3两部分,请确定M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;
(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程
(1)解方程:x2﹣2x﹣8=0;
(2)解不等式组

查看答案和解析>>

同步练习册答案