【题目】如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E.
(1)证明∠BAD=∠C;
(2)∠BAD=29°,求∠B的度数.
科目:初中数学 来源: 题型:
【题目】观察下表:我们把表格中字母的和所得的多项式称为“有特征多项式”,例如:
第1格的“有特征多项式”为,,
第2格的“有特征多项式”为,,
回答下列问题:
(1)第3格“有特征多项式”为__________第4格的“有特征多项式”为____________
第格的“有特征多项式”为__________.
(2)若第格的“特征多项式”与多项式的和不含有项,求此“有特征多项式”.
序号 | 1 | 2 | 3 | 4 | …… |
图形 |
|
|
|
| …… |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【操作发现】
如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.
(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;
(2)在(1)所画图形中,∠AB′B= .
【问题解决】
如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.
小明同学通过观察、分析、思考,对上述问题形成了如下想法:
想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;
想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.
…
请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)
【灵活运用】
如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=2,动点P从点B出发,以每秒1个单位的速度在正方形的边上沿BC-CD-DA运动,设运动时间为t,△PAB面积为S.
(1)求S关于t的函数解析式,并写出自变量t的取值范围;
(2)画出相应函数图象;
(3)当S=时,t的值为多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题,求的立方根.华罗庚脱口而出,你知道怎样迅速准确地计算出结果的吗?请按照下面的问题试一试:
(1)由,确定的立方根是 位数;
(2)由的个位数是确定的立方根的个位数是 ;
(3)如果划去后面的三位得到数,而,由此能确定的立方根的十位数是 ;所以的立方根是 ;
(4)用类似的方法,请说出的立方根是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电力维修小组从点出发,在东西线路上检修电线,如果规定向东为正,向西为负,一天中行驶里程(单位:千米)记录如下:+5,-4,-7,+8,-9,+6,+5
(1)求收工时在地的什么方位?
(2)在记录中,距离最远有 千米?
(3)若每千米耗油0.2升,油价为5元/升,问出发到收工时共需要多少元油钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图:已知D为等腰直角△ABC斜边BC上的一个动点(D与B、C均不重合),连结AD,△ADE是等腰直角三角形,DE为斜边,连结CE,求∠ECD的度数.
(2)当(1)中△ABC、△ADE都改为等边三角形,D点为△ABC中BC边上的一个动点(D与B、C均不重合),当点D运动到什么位置时,△DCE的周长最小?请探求点D的位置,试说明理由,并求出此时∠EDC的度数.
(3)在(2)的条件下,当点D运动到使△DCE的周长最小时,点M是此时射线AD上的一个动点,以CM为边,在直线CM的下方画等边三角形CMN,若△ABC的边长为4,请直接写出DN长度的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着航母编队的成立,我国海军日益强大,2018年4月12日,中央军委在南海海域降重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:≈1.414,≈1.732,结果精确到1海里).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com