精英家教网 > 初中数学 > 题目详情
7.若代数式$\frac{\sqrt{x-2}}{\sqrt{x-1}}$有意义,则实数x的取值范围是(  )
A.x≥1B.x≥2C.x>1D.x>2

分析 根据二次根式有意义的条件即可求出x的范围;

解答 解:由题意可知:$\left\{\begin{array}{l}{x-2≥0}\\{x-1>0}\end{array}\right.$
∴解得:x≥2
故选(B)

点评 本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-2,0),B(1,0),顶点为C,对称轴于x轴交于点M,连接AC,BC,作AD∥BC交对称轴于点D,连接BD,有下列5个结论:①a-b=0;②当-2<x<1时,y>0;③四边形ADBC是菱形;④9a-3b+c>0;⑤c=2a,其中正确的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.实验探究:
(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.
(2)将图1中的三角形纸片BMN剪下,如图2.折叠该纸片,探究MN与BM的数量关系.写出折叠方案,并结合方案证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,抛物线y1=$\frac{1}{2}$(x+1)2+1与y2=a(x-4)2-3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:
①a=$\frac{2}{3}$;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.图1是太阳能热水器装置的示意图.利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:
如图2,AB⊥BC,垂足为点B,EA⊥AB,垂足为点A,CD∥AB,CD=10cm,DE=120cm,FG⊥DE,垂足为点G.
(1)若∠θ=37°50′,则AB的长约为83.2cm;
(参考数据:sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)
(2)若FG=30cm,∠θ=60°,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.
(1)求证:PQ是⊙O的切线;
(2)求证:BD2=AC•BQ;
(3)若AC、BQ的长是关于x的方程x+$\frac{4}{x}$=m的两实根,且tan∠PCD=$\frac{1}{3}$,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):

(1)求实验中“宁港”品种鱼苗的数量;
(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;
(3)你认为应选哪一品种进行推广?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.一枚质地均匀的骰子的6个面上分别刻有1〜6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案