精英家教网 > 初中数学 > 题目详情

【题目】如图,把可以自由转动的圆形转盘AB分别分成3等份的扇形区域,并在每一个小区域内标上数字.小明和小颖两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针两区域的数字均为奇数,则小明胜;若指针两区域的数字均为偶数,则小颖胜;若有指针落在分割线上,则无效,需重新转动转盘.这个游戏规则对双方公平吗?请说明理由.

【答案】这个游戏规则对双方公平,见解析.

【解析】

利用树状图列举出所有情况,分别求得两人获胜的概率,比较大小即可得知这个游戏规对双方是否公平.

这个游戏规则对双方公平,理由如下:

如图所示:

9种情况,其中均为偶数的有2种结果,均为奇数的情况数有2种,

所以小明获胜的概率为、小颖获胜的概率为

这个游戏规则对双方公平.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校1200名学生发起向贫困山区学生捐款活动,为了解捐款情况,学生会随机抽取了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②.

请根据以上信息,解答下列问题:

1)本次抽样调查的样本容量为____

2)图①中“20对应扇形的圆心角的度数为_____°

3)估计该校本次活动捐款金额为15元以上(含15元)的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将抛物线M1yax2+4x向右平移3个单位,再向上平移3个单位,得到抛物线M2,直线yxM1的一个交点记为A,与M2的一个交点记为B,点A的横坐标是﹣3

1)求a的值及M2的表达式;

2)点C是线段AB上的一个动点,过点Cx轴的垂线,垂足为D,在CD的右侧作正方形CDEF

当点C的横坐标为2时,直线yx+n恰好经过正方形CDEF的顶点F,求此时n的值;

在点C的运动过程中,若直线yx+n与正方形CDEF始终没有公共点,求n的取值范围(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】abc为互不相等的实数,且满足关系式:b2+c22a2+16a+14bca24a5.求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF=45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)设AEm

①△AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

②请直接写出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】61日是儿童节,为了迎接儿童节的到来,兰州某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.

1)求每件甲种、乙种玩具的进价分别是多少元?

2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?

3)在(2)条件下,若每件甲种玩具售价30元,每件乙种玩具售价45元,请求出卖完这批玩具获利W(元)与甲种玩具进货量m(件)之间的函数关系式,并求出最大利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,MAD边上一点,MB平分∠AMC

1)如图1,求证:BCMC

2)如图2GBM的中点,连接AGDG,过点MMNABDG于点E、交BC于点N

求证:AGDG

DGGE13时,求BM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,如果一个矩形的宽与长之比为,那么这个矩形就称为黄金矩形.如图,已知AB两点都在反比例函数yk0)位于第一象限内的图像上,过AB两点分别作坐标轴的垂线,垂足分别为CDEF,设ACBF交于点G,已知四边形OCADCEBG都是正方形FGOC的中点分别为PQ,连接PQ.给出以下结论:①四边形ADFG为黄金矩形;②四边形OCGF为黄金矩形;③四边形OQPF为黄金矩形.以上结论中,正确的是(

A. B. C. ②③D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.

请根据图表信息解答下列问题:

(1)a=_____;

(2)补全条形统计图;

(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?

(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.

查看答案和解析>>

同步练习册答案