精英家教网 > 初中数学 > 题目详情
我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

【答案】分析:(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;
(2)利润=销售总价-成本总价=单件利润×销售量.据此得表达式,运用性质求最值;
(3)根据自变量的取值范围结合函数图象解答.
解答:解:(1)画图如图;
由图可猜想y与x是一次函数关系,
设这个一次函数为y=kx+b(k≠0)
∵这个一次函数的图象经过(30,500)
(40,400)这两点,
解得
∴函数关系式是:y=-10x+800

(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得
W=(x-20)(-10x+800)
=-10x2+1000x-16000
=-10(x-50)2+9000
∴当x=50时,W有最大值9000.
所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.

(3)对于函数W=-10(x-50)2+9000,当x≤45时,
W的值随着x值的增大而增大,
∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.
点评:根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件) 30 40 50 60
每天销售量y(件) 500 400 300 200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?
(利润=销售总价-成本总价);
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件) 30 40 50 60
每天销售量y(件) 500 400 300 200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广东模拟)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元∕件) 30 40 50 60
每天销售量y(件) 500 400 300 200
(1)猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,试销该工艺品每天获得的利润最大?最大利润是多少?
(3)销售部门规定该工艺品单价不得超过48元,要想每天获得8750元利润,单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源:2009-2010学年江苏省泰州市姜堰市溱潼实验中学九年级(上)第二次阶段性练习(解析版) 题型:解答题

我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

查看答案和解析>>

同步练习册答案