精英家教网 > 初中数学 > 题目详情
如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).
(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为
(1,0)
(1,0)

(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为
(-2,3)
(-2,3)

(3)在(2)中的旋转过程中,线段OA扫过的图形的面积
13π
4
13π
4
分析:(1)根据平移的性质,上下平移在在对应点的坐标上,纵坐标上上加下减就可以求出结论;
(2)过点O作OA的垂线,在上面取一点A2使OA2=OA,同样的方法求出点B2,顺次连接A2、B2、O就得出△A2OB2,就可以相应的结论;
(3)根据条件就是求扇形A2OA的面积即可.
解答:解:(1)由题意,得
B1(1,3-3),
∴B1(1,0).
故答案为:(1,0);
(2)如图,①,过点O作OA的垂线,在上面取一点A2使OA2=OA,
②,同样的方法求出点B2,顺次连接A2、B2、O就得出△A2OB2
∴△A2OB2是所求作的图形.由作图得
A2(-2,3).
故答案为:(-2,3);
 (3)由勾股定理,得
OA=
13

∴线段OA扫过的图形的面积为:
90×π×13
360
=
13π
4

故答案为:
13π
4
点评:本题考查了旋转作图的运用,勾股定理的运用,扇形的面积公式的运用,平移的运用,解答时根据图形变化的性质求解是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,如果边长为1的正六边形ABCDEF绕着顶点A顺时针旋转60°后与正六边形AGHMNP重合,那么点B的对应点是点
 
,点E在整个旋转过程中,所经过的路径长为
 
 (结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心,
1
2
a
长为半径作
DE
EF
FD
,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将边长为3的正六边形A1A2A3A4A5A6,在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心,数学公式长为半径作数学公式数学公式数学公式,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:初三数学圆及旋转题库 第8讲:弧长和扇形面积(解析版) 题型:解答题

已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心,长为半径作,求阴影部分的面积.

查看答案和解析>>

同步练习册答案