精英家教网 > 初中数学 > 题目详情
在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴的负半轴相交于点C(如图),点C的坐标为(0,-3),且BO=CO
(1)求这个二次函数的解析式;
(2)设这个二次函数的图象的顶点为M,求AM的长.
(1)∵C(0,-3),OC=|-3|=3,
∴c=-3
又∵OC=BO,
∴BO=3,
∴B(3,0)
9+3b-3=0,6+3b=0,b=-2
∴y=x2-2x-3;

(2)∵对称轴x=-
b
2a
=-
-2
2
=1
,B(3,0),
∴A点坐标为:(-1,0),
∵顶点纵坐标y=-4,
∴AM=
AD2+DM2
=
22+42
=2
5
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,已知:抛物线y=
1
2
x2+bx+c
与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=
1
2
x-2
,连接AC.
(1)写出B、C两点坐标,并求抛物线的解析式;
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFG(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.
{抛物线y=ax2+bx+c的顶点坐标是(-
b
2a
4ac-b2
4a
)
}.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,平面直角坐标系xOy中,抛物线y=
1
2
x2+bx+c
与x轴交于A、B两点,点C是AB的中点,CD⊥AB且CD=AB.直线BE与y轴平行,点F是射线BE上的一个动点,连接AD、AF、DF.
(1)若点F的坐标为(
9
2
,1),AF=
17

①求此抛物线的解析式;
②点P是此抛物线上一个动点,点Q在此抛物线的对称轴上,以点A、F、P、Q为顶点构成的四边形是平行四边形,请直接写出点Q的坐标;
(2)若2b+c=-2,b=-2-t,且AB的长为kt,其中t>0.如图2,当∠DAF=45°时,求k的值和∠DFA的正切值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y=mx2-2mx+n与x轴交于A、B两点,点A的坐标为(-2,0).
(1)求B点坐标;
(2)直线y=
1
2
x+4m+n
经过点B.
①求直线和抛物线的解析式;
②点P在抛物线上,过点P作y轴的垂线l,垂足为D(0,d).将抛物线在直线l上方的部分沿直线l翻折,图象的其余部分保持不变,得到一个新图象G.请结合图象回答:当图象G与直线y=
1
2
x+4m+n
只有两个公共点时,d的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O的半径为2,C1是函数的y=
1
2
x2
的图象,C2是函数的y=-
1
2
x2
的图象,C3是函数的y=x的图象,则阴影部分的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,
(1)AC=______;
(2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=______.
(3)总面积S有最大值还是最小值?这个最大值或最小值是多少?
(4)总面积S取最大值或最小值时,点C在AB的什么位置?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售.镇政府对该花木产品每年固定投资x万元,所获利润为P=-
1
50
(x-30)2+10
万元.为了响应我国西部大开发的宏伟决策,镇政府在制定经济发展的10年规划时,拟定开发花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路;后5年公路修通时,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每年固定投资x万元可获利润Q=-
49
50
(50-x)2+
194
5
(50-x)+308
万元.
(1)若不进行开发,求10年所获利润的最大值是多少?
(2)若按此规划进行开发,求10年所获利润的最大值是多少?
(3)若按此规划进行开发后,后5年所获利润共为2400万元,那么当本地销售投资金额大于外地销售投资金额时,每年用于本地销售投资的金额约为多少万元?(
13
≈3.606
55
≈7.416
,计算结果保留1位小数)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+5x+m经过点A(1,0),与y轴交于点B,
(1)求m的值;
(2)若抛物线与x轴的另一交点为C,求△CAB的面积;
(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.
(1)当AB的中点落在y轴时,求c的取值范围;
(2)当AB=2
2
,求c的最小值,并写出c取最小值时抛物线的解析式;
(3)设点P(t,T)在AB之间的一段抛物线上运动,S(t)表示△PAB的面积.
①当AB=2
2
,且抛物线与直线的一个交点在y轴时,求S(t)的最大值,以及此时点P的坐标;
②当AB=m(正常数)时,S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此时点P的坐标(t,T)满足的关系,若不存在说明理由.

查看答案和解析>>

同步练习册答案