精英家教网 > 初中数学 > 题目详情
如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是(  )
A.B.C.D.
B
根据条件可知△AEH≌△BFE≌△CGF≌△DHG,设AE为x,则AH=1-x,根据勾股定
理EH2=AE2+AH2=x2+(1-x)2,进而可求出函数解析式,求出答案.
解:∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,
∴可证△AEH≌△BFE≌△CGF≌△DHG.
设AE为x,则AH=1-x,根据勾股定理,得
EH2=AE2+AH2=x2+(1-x)2
即s=x2+(1-x)2
s=2x2-2x+1,
∴所求函数是一个开口向上,对称轴是直线x=
∴自变量的取值范围是大于0小于1.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:
销售单价x
(元/件)

55
60
70
75

一周的销售量y
(件)

450
400
300
250

(1)直接写出y与x的函数关系式:                           
(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?
(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是()
A.a>0B.c>0C.b2-4ac>0D.a+b+c>0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴交于点A、B两点,与y轴交于点C.
(1)求A、B两点的坐标;
(2)若S△ABC=8,则过A、B、C三点的圆是否与抛物线有第四个交点D?若存在,求出D点坐标;若不存在,说明理由.
(3)将△OAC沿直线AC翻折,点O的对应点为O'.
①若O'落在该抛物线的对称轴上,求实数a的值;
②是否存在正整数a,使得点O'落在△ABC的内部,若存在,求出整数a的值;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是(    )
A.           B.
C.             D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:M、N两点关于y轴对称,且点M在双曲线上,点N在直线上,设点M的坐标为,则二次函数(      )
A.有最大值,最大值为B.有最大值,最大值为
C.有最小值,最小值为D.有最小值,最小值为

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-x2+bx+c的图象经过B、C两点.

(1)求该二次函数的解析式;
(2)结合函数的图象探索:当y>0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形ABCD中,AD=8 cm,AB=6 cm.动点E从点C开始沿边CB向点B以2 cm/s的速度运动至点B停止,动点F从点C同时出发沿边CD向点D以1 cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的

查看答案和解析>>

同步练习册答案