精英家教网 > 初中数学 > 题目详情
精英家教网在正方形ABCD中,AB=2,P是BC边上与B、C不重合的任意点,DQ⊥AP于Q.(1)求证:△DQA∽△ABP.
(2)当P点在BC上变化时,线段DQ也随之变化.设PA=x,DQ=y,求y与x之间的函数关系式.
分析:(1)根据四边形ABCD是正方形,DQ⊥AP,可得∠BAP=∠ADQ,即可求证△DQA∽△ABP.
(2)根据四边形ABCD是正方形和△DQA∽△ABP中的对应边成比例,得出
x
2
=
2
y
即可.
解答:解:(1)∵四边形ABCD是正方形,DQ⊥AP.
∴∠BAD=∠B,∠AQD=90°,
∴∠B=∠AQD,
又∵∠BAP+∠QAD=90°,∠ADQ+∠QAD=90°
∴∠BAP=∠ADQ,
∴△DQA∽△ABP;

(2)∵四边形ABCD是正方形,
∴AB=AD,
∵△DQA∽△ABP,
PA
AD
=
AB
QD

x
2
=
2
y

∴xy=4
即 y=
4
x
(2<x<2
2
).
点评:本题主要考查学生对相似三角形的判定与性质和正方形性质的理解和掌握,此题的关键是利用相似三角形对应边成比例,难度不大,是一道基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在正方形ABCD中,E为AD的中点,F为DC上的一点,且DF=
14
DC.求证:△BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN
(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.

查看答案和解析>>

同步练习册答案