精英家教网 > 初中数学 > 题目详情

阅读材料:

如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABCah,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:

如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.

(1)求抛物线和直线AB的解析式;

(2)点P是抛物线(在第一象限内)上的一个动点,连接PA、PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB

(3)是否存在一点P,使S△PABS△CAB,若存在,求出P点的坐标;若不存在,请说明理由.

答案:
解析:

  解:(1)设抛物线的解析式为:y1=a(x-1)2+4.

  把A(3,0)代入解析式求得a=-1.

  所以y1=-(x-1)2+4=-x2+2x+3.

  设直线AB的解析式为y2=kx+b.

  由y1=-x2+2x+3求得B点的坐标为(0,3).

  把A(3,0),B(0,3)代入y2=kx+b中,

  解得k=-1,b=3.

  所以y2=-x+3.

  (2)因为C点坐标为(1,4),

  所以当x=1时,y1=4,y2=2.

  所以CD=4-2=2.

  S△CAB×3×2=3.

  (3)假设存在符合条件的点P,设P点的横坐标为x,△PAB的铅垂高为h,

  则h=y1-y2=(-x2+2x+3)-(-x+3)=-x2+3x.

  由S△PABS△CAB

  得×3×(-x2+3x)=×3.

  化简,得4x2-12x+9=0.

  解得x=

  将x=代入y1=-x2+2x+3中,

  解得P点坐标为().


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

附加题:
(1)如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是
 

精英家教网
(2)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=
1
2
ah
,即三角形面积等于水平宽与铅垂高乘积的一半.
精英家教网
解答下列问题:
如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
①求抛物线和直线AB的解析式;
②点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
③点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=
9
8
S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•丰南区一模)阅读材料:如图,过△ABC的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可以得出一种计算三角形面积的新方法:S△ABC=
12
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:如图,抛物线顶点坐标为点C(1,4)交x轴于点A,交y轴于点B(0,3)

(1)求抛物线解析式和线段AB的长度;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)在第一象限内抛物线上求一点P,使S△PAB=S△CAB

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.
我们可得出一种计算三角形面积的新方法:S△ABC=
12
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
已知:直线l1:y=-2x+6与x轴交于点A,直线l2:y=x+3与y轴交于点B,直线l1、l2交于点C.
(1)建立平面直角坐标系,画出示意图(无需列表)并求出C点的坐标;
(2)利用阅读材料提供的方法求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料:如图,过△ABC的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可以得出一种计算三角形面积的新方法:S△ABC=数学公式ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:如图,抛物线顶点坐标为点C(1,4)交x轴于点A,交y轴于点B(0,3)

(1)求抛物线解析式和线段AB的长度;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)在第一象限内求一点P,使S△PAB=S△CAB

查看答案和解析>>

科目:初中数学 来源:2009-2010学年浙江省温州市永嘉县九年级(上)期末数学试卷(解析版) 题型:解答题

附加题:
(1)如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是______.

(2)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
①求抛物线和直线AB的解析式;
②点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
③点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案