精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=
12
,∠CAD=30°.
(1)求证:AD是⊙O的切线;
(2)若OD⊥AB,BC=5,求AD的长.
分析:(1)连接OA,由于sinB=
1
2
,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;
(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.
解答:证明:连接OA,
(1)∵sinB=
1
2

∴∠B=30°,
∠AOC=60°,
又∵OA=OC,精英家教网
∴△AOC是等边三角形,
∴∠OAC=60°,
∴∠OAD=60°+30°=90°,
∴AD是⊙O的切线;

(2)∵OC⊥AB,OC是半径,
∴BE=AE,
∴OD是AB的垂直平分线,
∴∠DAE=60°,∠D=30°,
在Rt△ACE中,AE=cos30°×AC=
5
2
3

∴在Rt△ADE中,AD=2AE=5
3
点评:本题利用了三角函数值、圆周角定理、等边对等角、等边三角形的判定和性质、切线的判定、垂直平分线的判定和性质、直角三角形中30°的角所对的直角边等于斜边的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案