精英家教网 > 初中数学 > 题目详情
一个多边形的对角线的条数与它的边数相等,这个多边形的边数是(  )
A、7B、6C、5D、4
分析:可根据多边形的对角线与边的关系列方程求解.
解答:解:设多边形有n条边,
n(n-3)
2
=n,
n(n-3)-2n=0
n(n-5)=0
解得n1=5,n2=0(舍去),
故多边形的边数为5.
故选C.
点评:这类根据多边形的对角线,求边数的问题一般都可以化为求一元二次方程的解的问题,求解中舍去不符合条件的解即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

一个多边形的对角线的条数恰好是边数的3倍,则这个多边形的边数为(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:初中数学 来源: 题型:

一个多边形的对角线的条数等于边数的5倍,则这个多边形是
 
边形.

查看答案和解析>>

科目:初中数学 来源:第25章《图形的变换》中考题集(20):25.2 旋转变换(解析版) 题型:解答题

在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P′在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
(1)填空:
①如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(______,______);
②如图2,△ABC是边长为1cm的等边三角形,将它作旋转相似变换A(,90°),得到△ADE,则线段BD的长为______cm;
(2)如图3,分别以锐角三角形ABC的三边AB,BC,CA为边向外作正方形ADEB,BFGC,CHIA,点O1,O2,O3分别是这三个正方形的对角线交点,试分别利用△AO1O3与△ABI,△CIB与△CAO2之间的关系,运用旋转相似变换的知识说明线段O1O3与AO2之间的关系.

查看答案和解析>>

科目:初中数学 来源:2012年浙江省杭州市青春中学中考数学模拟试卷(解析版) 题型:解答题

在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P′在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
(1)填空:
①如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(______,______);
②如图2,△ABC是边长为1cm的等边三角形,将它作旋转相似变换A(,90°),得到△ADE,则线段BD的长为______cm;
(2)如图3,分别以锐角三角形ABC的三边AB,BC,CA为边向外作正方形ADEB,BFGC,CHIA,点O1,O2,O3分别是这三个正方形的对角线交点,试分别利用△AO1O3与△ABI,△CIB与△CAO2之间的关系,运用旋转相似变换的知识说明线段O1O3与AO2之间的关系.

查看答案和解析>>

同步练习册答案