精英家教网 > 初中数学 > 题目详情
13.若关于x的方程kx2-2x+1=0有实根,求k的取值.

分析 分k=0和k≠0两种情况考虑,当k=0时可求出方程的根,当k≠0时,根据根的判别式△=4-4k≥0,解不等式即可得出结论.

解答 解:当k=0时,方程为-2x+1=0,
解得:x=$\frac{1}{2}$;
当k≠0时,∵方程kx2-2x+1=0有实根,
∴△=(-2)2-4k×1=4-4k≥0,
解得:k≤1.
综上可知:若关于x的方程kx2-2x+1=0有实根,则k的取值范围为k≤1.

点评 本题考查了根的判别式,解题的关键是找出分k=0和k≠0考虑.本题属于基础题,难度不大,解决该题型题目时,根据方程根的情况结合根的判别式得出方程(不等式或不等式组)是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.
(1)若△BPQ与△ABC相似,求t的值;
(2)试探究t为何值时,△BPQ是等腰三角形;
(3)试探究t为何值时,CP=CQ;
(4)连接AQ,CP,若AQ⊥CP,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,将抛物线y=-x2+1平移,平移后的抛物线与x轴交于点A(-1,0)和点B(3,0),并与x轴交于点C.
(1)求平移后的抛物线的表达式;
(2)点P是抛物线在第一象限上的一动点,当∠ACB=∠ABP时,求点P的坐标;
(3)在(2)问的条件下,点E是PB的中点,过点P作x轴的平行线交y轴于点F,点M是直线PF上的一个动点,且点M与点P不重合,当∠PME=$\frac{1}{3}$∠MEB是,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)-22+[(-4)×(-$\frac{1}{2}$)-|-3|];            
(2)-32+16÷(-2)×$\frac{1}{2}$-(-1)2015

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.正方形ABCD中,点EF分别在边BC和CD上,且AE⊥BF.点C关于自线BF的对称点为点G,连线FG并延长交AD于点H,若点H是AD的三等分点,则的$\frac{BE}{BC}$值为$\frac{1}{5}$或$\frac{11}{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算下列各题:
(1)(2+$\sqrt{3}$)(2-$\sqrt{3}$);
(2)(2+$\sqrt{3}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.“3.15”植树节活动后,对栽下的甲、乙、丙、丁四个品种的树苗进行成活率观测,以下是根据观测数据制成的统计图表的一部分:
表1 栽下的各品种树苗棵数统计表
植树品种甲种乙种丙种丁种
植树棵数150125125
请你根据以上信息解答下列问题:
(1)将上表补充完整;
(2)图1中,甲30%%、乙20%%,并将图2补充完整;
(3)若经观测计算得出丙种树苗的成活率为89.6%,求这次植树活动的树苗成活率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在⊙O中,点A,B,C,E在⊙O中,点D为弦AB上一点,连接BE,CE,AC,若BD=CD,CD∥BE.
(1)如图1,求证:CE=AC;
(2)若点D与O重合,如图2,连接AE、BC,作EH⊥BC于H,CK⊥AB于K,求证:AE=2HK.
(3)在(2)的条件下,如图2,BK=3HK,EC=4$\sqrt{10}$,求BH长.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年广东省佛山市顺德区七年级3月月考数学试卷(解析版) 题型:单选题

如图,在下列四组条件中,能得到AB∥CD的是(  )

A. ∠ABD=∠BDC B. ∠3=∠4

C. ∠BAD+∠ABC=180° D. ∠1=∠2

查看答案和解析>>

同步练习册答案