精英家教网 > 初中数学 > 题目详情
(2013•百色)如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),并与y=
k2x
的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线.
(1)求一次函数与反比例函数的解析式;
(2)若点C′是点C关于y轴的对称点,请求出△ABC′的面积.
分析:(1)根据直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),代入解析式,求出k1和b的值,从而得出一次函数的解析式;再根据OB是△ACD的中位线,得出点C的坐标,最后代入双曲线y=
k2
x
,即可求出反比例函数的解析式.
(2)根据点C′是点C(3,4)关于y轴的对称点,求出C′的坐标,从而得出AC′⊥AO,最后根据S△ABC=S梯形AOBC′-S△ABO,代入计算即可.
解答:解:(1)∵直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),
-3k1+b=0
b=2

解得
k1=
2
3
b=2

∴一次函数的解析式为y=
2
3
x+2.
∵OB是△ACD的中位线,OA=3,OB=2,∴OD=3,DC=4.
∴C(3,4).
∵点C在双曲线y=
k2
x
上,
∴k2=3×4=12.
∴反比例函数的解析式为y=
12
x


(2)∵点C′是点C(3,4)关于y轴的对称点,
∴C′(-3,4).
∴AC′⊥AO.
∴S△ABC=S梯形AOBC′-S△ABO=
1
2
×
(2+4)×3-
1
2
×
3×2=6.
点评:此题考查了一次函数和反比例函数,用到的知识点是运用待定系数法求函数的解析式,三角形的中位线,关键是列出求三角形面积的等式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•百色)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•百色)如图,在边长为10cm的正方形ABCD中,P为AB边上任意一点(P不与A、B两点重合),连结DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为
5
2
5
2
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•百色)如图,在等腰梯形ABCD中,DC∥AB,E是DC延长线上的点,连接AE,交BC于点F.
(1)求证:△ABF∽△ECF;
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•百色)如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2.C2的图象与x轴交于A、B两点(点A在点B的左侧).
(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形?如果存在,请求出点G的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案