精英家教网 > 初中数学 > 题目详情

半径为中,直径的不同侧有定点和动点,已知,点上运动,过点的垂线,与的延长线交于点

(1)当点运动到与点关于直径对称时,求的长;

   

(2)当点运动到什么位置时,取到最大值,并求出此时的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1所示,一张半圆形纸片,直径AB=10,点C是半圆上的一个动点.沿半径CO把这张纸片剪出△AC1O1和△BC2O2两个三角形(如图2所示).将纸片△AC1O1沿直线O2B(AB)方向平移(点A,O1,O2,B始终在同一直线上),当点O1与点B重合时,停止平移.在平移过程中,C1O1与BC2交于点E,AC1与C2O2,BC2分别交于点F、P.
(1)当△AC1O1平移到如图3所示的位置时,猜想图中的O1E与O2F的数量关系,并证明你的猜想;
(2)若∠CAB=30°,设平移距离O1O2为x,△AC1O1与△BC2O2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值,使重叠部分的面积等于原△ABC面积的
14
.若存在,求x的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,A,B两点的坐标分别为(0,-2),(0,8),以AB为一边作正方形ABCD,再以CD为直径的半圆P.设x轴交半圆P于点E,交边CD于点F.
(1)求线段EF的长;
(2)连接BE,试判断直线BE与⊙P的位置关系,并说明你的理由;
(3)直线BE上是否存在着点Q,使得以Q为圆心、r为半径的圆,既与y轴相切又与⊙P外切?若存在,试求r的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,第一象限内半径为4的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+6.
(1)设点P的纵坐标为p,写出p随k变化的函数关系式;
(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明;
(3)是否存在△AMN的面积等于
12825
?若存在,请求出符合的k值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苏州一模)如图,在平面直角坐标系中,点D为y轴上一点,⊙D与坐标轴分别相交于A(-
3
,0)、C(0,3)及B、F四点.
(1)求⊙D的半径.
(2)E为优弧AB上一动点(不与A,B,C三点重合),M为半径DE的中点,连接M0,若∠MOD=α°,弧CE的长为y,求y与α之间的函数关系式;
(3)在(2)的条件下,过点E作EN⊥x轴于点N连接MN,当∠ENM=15°时,求E点的坐标,并判断以DE为直径的⊙M与直线DN的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).
(1)求这个二次函数的解析式;
(2)求△ABC的外接圆半径r;
(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案