精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.
(1)将A(1,0),B(-3,0)代y=-x2+bx+c中得
-1+b+c=0
-9-3b+c=0
(2分)
b=-2
c=3
(3分)
∴抛物线解析式为:y=-x2-2x+3;(4分)

(2)存在(5分)
理由如下:由题知A、B两点关于抛物线的对称轴x=-1对称
∴直线BC与x=-1的交点即为Q点,此时△AQC周长最小
∵y=-x2-2x+3
∴C的坐标为:(0,3)
直线BC解析式为:y=x+3(6分)
Q点坐标即为
x=-1
y=x+3

解得
x=-1
y=2

∴Q(-1,2);(7分)

(3)存在.(8分)
理由如下:设P点(x,-x2-2x+3)(-3<x<0)
∵S△BPC=S四边形BPCO-S△BOC=S四边形BPCO-
9
2

若S四边形BPCO有最大值,则S△BPC就最大,
∴S四边形BPCO=S△BPE+S直角梯形PEOC(9分)
=
1
2
BE•PE+
1
2
OE(PE+OC)
=
1
2
(x+3)(-x2-2x+3)+
1
2
(-x)(-x2-2x+3+3)
=-
3
2
(x+
3
2
)
2
+
9
2
+
27
8

当x=-
3
2
时,S四边形BPCO最大值=
9
2
+
27
8

∴S△BPC最大=
9
2
+
27
8
-
9
2
=
27
8
(10分)
当x=-
3
2
时,-x2-2x+3=
15
4

∴点P坐标为(-
3
2
15
4
).(11分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,是抛物线形拱桥,当拱顶离水面2米时,水面宽4米.若水面下降1米,则水面宽度将增加多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,直线L:y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线G:y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.
(1)该抛物线G的解析式为______;
(2)将直线L沿y轴向下平移______个单位长度,能使它与抛物线G只有一个公共点;
(3)若点E在抛物线G的对称轴上,点F在该抛物线上,且以点A、B、E、F为顶点的四边形为平行四边形,求点E与点F坐标并直接写出平行四边形的周长.
(4)连接AC,得△ABC.若点Q在x轴上,且以点P、B、Q为顶点的三角形与△ABC相似,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=
1
6
x2+bx+c过点A和B,与y轴交于点C.
(1)求点C的坐标,并画出抛物线的大致图象;
(2)点Q(8,m)在抛物线y=
1
6
x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;
(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,直线y=-
2
3
x+2
与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(-1,0).

(1)求B、C两点的坐标及该抛物线所对应的函数关系式;
(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线ay轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.
①求S与m之间的函数关系式,并写出自变量m的取值范围;
②求S的最大值,并判断此时△OBE的形状,说明理由;
(3)过点P作直线bx轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在平面直角坐标系中,抛物线y=-
5
6
x2+
13
6
x+c与y轴交于点D,与x轴负半轴交于点B(-1,0),直线y=
1
2
x+b与抛物线交于A、B两点.作△ABD的外接圆⊙M交x轴正半轴于点C,连结CD交AB于点E.
(1)求b、c的值;
(2)求:①点A的坐标;②∠AEC的正切值;
(3)将△BOD绕平面内一点旋转90°,使得该三角形的对应顶点中的两个点落在已知抛物线上(如图2),请直接写出旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

利客来超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如图所示的一次函数关系.
(1)试求出y与x的函数关系式;
(2)设利客来超市销售该绿色食品每天获得利润p元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约
5
3
m
.铅球落地点在B处,铅球运行中在运动员前4m处(即OC=4)达到最高点,最高点高为3m.已知铅球经过的路线是抛物线,根据如图所示的直角坐标系,你能算出该运动员的成绩吗?

查看答案和解析>>

同步练习册答案