精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AEF=80°,且∠Ax°,∠Cy°,∠Fz°.+|y-80-m|+|z-40|=0(m为常数,且0<m<100)

(1) 求∠A、∠C的度数(用含m的代数式表示)

(2) 求证:ABCD

(3) 若∠A=40°,∠BAM=20°,∠EFM=10°,直线AM与直线FM交于点M,直接写出∠AMF的度数

【答案】(1) ∠Am+20°,∠Cm+80°;(2)见解析; (3)50°、70°、30°、10°.

【解析】

(1)根据二次根式和绝对值的非负数性质解答即可;(2)过点FFGAB,过点EEHAB,可知EH//FG,根据平行线性质可证明∠BAE=∠AEHm20°,∠EFG=∠FEH,进而证明∠EFG=∠AEF-∠AEH80°(m20°)60°m,由∠CFG+∠FCDyz80°x80°m40°80°m20°180°,通过判定定理即可证明结论;(3)当∠A40°时,∠C100°,分情况讨论AMFM的位置,计算即可

(1) +|y-80-m|+|z-40|=0(m为常数,且0<m<100),

x-m-20=0,y-80-m=0,z-40=0,

∴∠A=x°=m+20°,C=y°=m+80°,z=40°,

(2) 过点FFGAB,过点EEHAB,

EHFG,

∴∠BAE=∠AEHm20°,∠EFG=∠FEH,

∴∠EFG=∠AEF-∠AEH80°(m20°)60°m,

∵∠CFG+∠FCDyz80°x80°m40°80°m20°180°,

ABCD,

(3) 当∠A40°时,∠C100°,

如图,分为四种情况:

延长FE交AM于N,

∵∠BAE=40°,∠BAM=20°,

∴∠MAE=20°,

∵∠AEF=80°,

∴∠ANE=80°-20°=60°,

∴∠AMF=60°-10°=50°,

∵∠AGF=∠MFE+∠AEF=10°+80°=90°,

∴∠AMF=90°-∠MAE=70°,

∵∠BAM=20°,∠BAE=40,°

∴∠EAM=60°,

∵∠AHF=∠MFE+∠AEF=90°,

∴∠AMF=90°-∠EAM=30°,

延长AE交FM于O,

∵∠AEF=∠EFO+∠AOF=80°,

∴∠AOF=80°-10°=70°,

∴∠AMF=∠AOF-∠MAF=70°-60°=10°,

综上所述:∠AMF的度数分别为:50°;70°;30°;10°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图ABC,AP垂直∠ABC的平分线BP于点P.ABC的面积为32cm2,BP=6cm,APB的面积是APC的面积的3AP=________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如图两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
(1)m=%,这次共抽取名学生进行调查;并补全条形图
(2)在这次抽样调查中,采用哪种上学方式的人数最多?
(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简求值
(1)计算:(3.14﹣π)0+(﹣ 2﹣2sin30°;
(2)化简: ÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.
(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:平面直角坐标系中,A(a,3)、B(b,6)、C(c,1),abc都为实数,并且满足3b-5c=-2a-18,4bc=3a+10

(1) 请直接用含a的代数式表示bc

(2) 当实数a变化时,判断ABC的面积是否发生变化?若不变,求其值;若变化,求其变化范围

(3) 当实数a变化时,若线段ABy轴相交,线段OB与线段AC交于点P,且SPABSPBC,求实数a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系xoy中,抛物线y=(m﹣1)x2﹣(3m﹣4)x﹣3与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴是经过(1,0)且与y轴平行的直线,点P是抛物线上的一点,点Q是y轴上一点;

(1)求抛物线的函数关系式;
(2)若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;
(3)若tan∠PCB= ,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点DE分别是BCAD的中点,CE的延长线于则四边形AFBD的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答下列各题

(1)化简并求值:-(3a2-4ab)+[a2-(a+2ab)] ,其中a=-2,b=1

(2)已知多项式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与字母x的取值无关,求a、b的值.

查看答案和解析>>

同步练习册答案