精英家教网 > 初中数学 > 题目详情
如图,已知AD⊥BC于D,EF⊥BC于F,∠E=∠1,AD平分∠BAC吗?若平分,请写出推理过程;若不平分,试说明理由.
分析:AD平分∠BAC,首先证明EF∥AD,根据平行线的性质可得∠E=∠DAC,∠1=∠BAD,再由∠E=∠1,可得∠BAD=∠CAD,进而得到AD平分∠BAC.
解答:解:AD平分∠BAC;
∵AD⊥BC于D,EF⊥BC于F,
∴∠EFC=∠ADC=90°,
∴EF∥AD,
∴∠E=∠DAC,∠1=∠BAD,
∵∠E=∠1,
∴∠BAD=∠CAD,
∴AD平分∠BAC.
点评:此题主要考查了平行线的判定与性质,关键是掌握行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,则∠ABC=
68°
,∠C=
56°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD=BC.EC⊥AB.DF⊥AB,C.D为垂足,要使△AFD≌△BEC,还需添加一个条件.若以“ASA”为依据,则添加的条件是
∠A=∠B
∠A=∠B

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD=BC,AC=BD,∠DAC与∠CBD有什么关系?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD∥BC,AD平分∠CAE,试说明△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,则∠C=
56°
56°

查看答案和解析>>

同步练习册答案