精英家教网 > 初中数学 > 题目详情
(2003•成都)已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.
(1)求证:AC•BC=BE•CD;
(2)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.

【答案】分析:(1)欲证AC•BC=BE•CD,可以证明△ADC∽△ECB得出;
(2)求⊙O的直径BE的长,由AC•BC=BE•CD知,可在Rt△ACD和Rt△BCD中,根据已知条件求出BC,AC的长即可.
解答:(1)证明:连接CE(1分)
∵BE是⊙O的直径
∴∠ECB=90°
∵CD⊥AB
∴∠ADC=90°
∴∠ECB=∠ADC
又∵∠A=∠E(同弧所对的圆周角相等),
∴△ADC∽△ECB(2分)

∴AC•BC=BE•CD;(1分)

(2)解:∵CD=6,AD=3,BD=8
∴BC==10(1分)
∴AC=(1分)
∵AC•BC=BE•CD
×10=BE•6
∴BE=5
∴⊙O的直径BE的长是.(2分)
点评:本题考查了同弧所对的圆周角相等、直径所对的圆周角为直角及解直角三角形的知识,同时考查了相似三角形的判定和性质,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2003•成都)已知⊙O的直径为6,P为直线l上一点,OP=3,那么直线l与⊙O的关系是
相切或相交
相切或相交

查看答案和解析>>

科目:初中数学 来源: 题型:

(2003•成都)已知一次函数y1=kx+b的图象与反比例函数y2=-
8x
的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,求:
(1)一次函数的解析式;
(2)△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2003•成都)已知关于x的一元二次方程8x2+(m+1)x+m-7=0有两个负数根,那么实数m的取值范围是
m>7
m>7

查看答案和解析>>

科目:初中数学 来源: 题型:

(2003•成都)已知二次函数y=x2+bx+c的顶点M在直线y=-4x上,并且图象经过点A(-1,0).
(1)求这个二次函数的解析式;
(2)设此二次函数与x轴的另一个交点为B,与y轴的交点为C,求经过M、B、C三点的圆O′的直径长;
(3)设圆O′与y轴的另一个交点为N,经过P(-2,0)、N两点的直线为l,则圆心O′是否在直线上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《三角形》(08)(解析版) 题型:解答题

(2003•成都)已知:如图,在等腰梯形ABCD中,AD∥BC,PA=PD,求证:PB=PC.

查看答案和解析>>

同步练习册答案