精英家教网 > 初中数学 > 题目详情
如图,在四边形ABCD中,AD∥BC、AB∥CD,过点P画线段EF、GH分别平行于AB、BC,则图中共有平行四边形(  )个.
分析:根据平行公里及推论得出AB∥EF∥DC,AD∥GH∥BC,根据平行四边形的判定推出即可.
解答:解:∵AD∥BC、AB∥CD,EF∥AB,GH∥BC,
∴AB∥EF∥DC,AD∥GH∥BC,
∴共有9个平行四边形,如平行四边形AGPE,平行四边形BGPF,平行四边形PEDH,平行四边形PFCH,平行四边形ABFE,平行四边形EFCD,平行四边形AGHD,平行四边形BGHC,平行四边形ABCD,
故选C.
点评:本题考查了平行线的判定和平行四边形的判定,注意:有两组对边分别平行的四边形是平行四边形,题目比较好,但是比较容易出错.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案