精英家教网 > 初中数学 > 题目详情

【题目】小聪和小明沿同一条路同时从学校出发到学校图书馆查阅资料,学校与图书馆的路程是千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线和线段分别表示两人离学校的路程(千米)与所经过的时间(分钟)之间的函数关系,请根据图象回答下列问题:

(1)小聪在图书馆查阅资料的时间为 分钟,小聪返回学校的速度为 千米/分钟;

(2)请你求出小明离开学校的路程(千米)与所经过的时间(分钟)之间的函数关系;

(3)求线段的函数关系式;

(4)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?

【答案】115;(2st的函数关系式st0t45).(3)线段的函数解析式为s- t1230t45);(43千米

【解析】

1)直接根据图象上所给的数据的实际意义可求解;

2)由图象可知,st的正比例函数,设所求函数的解析式为sktk0),把(454)代入解析式利用待定系数法即可求解;

3)由图象可知,小聪在30t45的时段内st的一次函数,设线段的函数解析式为smtnm0)把(304),(450)代入利用待定系数法先求得函数关系式,

4)根据求函数图象的交点方法求得函数交点坐标即可.

1)∵3015154÷15

∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.

故答案为:15

2)由图象可知,st的正比例函数

设所求函数的解析式为sktk0

代入(454),得

445k

解得k

st的函数关系式st0t45).

3)由图象可知,小聪在30t45的时段内st的一次函数,设线段的函数解析式为smtnm0

代入(304),(450),得

解得

s- t1230t45),

即线段的函数解析式为s- t1230tspan>≤45);

4)令-t12t,解得t

t时,S×3

答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】【新知理解】

如图①,若点在直线l同侧,在直线l上找一点,使的值最小.

作法:作点关于直线l的对称点,连接交直线l于点,则点即为所求.

【解决问题】

如图②是边长为6cm的等边三角形的中线,点分别在上,则的最小值为 cm;

【拓展研究】

如图③,在四边形的对角线上找一点,使.(保留作图痕迹,并对作图方法进行说明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=6,BC=8,若AC,BC边上的中线BE,AD 垂直相交于点O,则AB=(

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=x2+bx+cx轴交于A(1,0),B(m,0),与y轴交于C.

(1)若m=-3,求抛物线的解析式,并写出抛物线的对称轴;

(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在抛物线对称轴左侧上有 一点E,使SACESACD,求E点的坐标;

(3) 如图2,设F(-1,-4),FG⊥y轴于G,在线段OG上是否存在点P,使 ∠OBP=∠FPG? 若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=mx2-6x+1(m是常数).

(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;

(2)若该函数的图象与x轴只有一个交点,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC∠C=90°AC=12BC=6,一条线段PQ=ABPQ两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC△QPA全等,则AP= ______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南中国海是中国固有领海,我渔政船经常在此海域执勤巡察.一天我渔政船停在小岛A北偏西37°方向的B处,观察A岛周边海域.据测算,渔政船距A岛的距离AB长为10海里.此时位于A岛正西方向C处的我渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号.渔政船接警后,立即沿BC航线以每小时30海里的速度前往救助,问渔政船大约需多少分钟能到达渔船所在的C处?

(参考数据:sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知过点B10)的直线l1与直线l2y2x+4相交于点P(﹣1a),l1y轴交于点Cl2x轴交于点A

1)求a的值及直线l1的解析式.

2)求四边形PAOC的面积.

3)在x轴上方有一动直线平行于x轴,分别与l1l2交于点MN,且点M在点N的右侧,x轴上是否存在点Q,使MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实党的精准扶贫政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20/吨和25/吨;从B城往C、D两乡运肥料的费用分别为15/吨和24/吨.现C乡需要肥料240吨,D乡需要肥料260吨.

(1)A城和B城各有多少吨肥料?

(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.

(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?

查看答案和解析>>

同步练习册答案