精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正确的个数为(

A. 2 B. 3 C. 4 D. 5

【答案】C

【解析】

由抛物线的开口方向判断a0的关系,由抛物线与y轴的交点判断c0的关系,然后根据对称轴及抛物线的顶点坐标情况进行推理,进而对所得结论进行判断.

①图象开口向下,与y轴交于负半轴,对称轴在y轴右侧,能得到:a<0,c<0,

ac>0,故①正确;

②当x=1时,y>0,a+b+c>0,故②错误;

③当x=-2时,y<0,4a-2b+c<0,故③正确;

④∵对称轴x=-<1,

2a+b<0,故④正确;

⑤∵抛物线的顶点在x轴的上方,

<1,

4a<0,

4ac-b2>4a,故⑤错误;

⑥∵2a+b>0,

2a+b-a>-a,

a+b>-a,

a<0,

-c>0,

a+b>0,故⑥正确;

综上所述正确的个数为4个,

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线.下列结论中,正确的是(  )

A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:

(1)港口A与小岛C之间的距离;

(2)甲轮船后来的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为1520℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y)随时间xh)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:

1)求02小时期间yx的函数解析式;

2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形OABC中,OABCAB两点的坐标分别为A130),B1112).动点PQ分别从OB两点出发,点P以每秒2个单位的速度沿x轴向终点A运动,点Q以每秒1个单位的速度沿BC方向运动;当点P停止运动时,点Q也同时停止运动.线段PQOB相交于点D,过点DDEx轴,交AB于点E,射线QEx轴于点F.设动点PQ运动时间为t(单位:秒).

(1)t为何值时,四边形PABQ是平行四边形.

(2)PQF的面积是否发生变化?若变化,请求出PQF的面积s关于时间t的函数关系式;若不变,请求出PQF的面积.

(3)随着PQ两点的运动,PQF的形状也随之发生了变化,试问何时会出现等腰PQF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于二次函数y=x22mx3,有下列结论:

①它的图象与x轴有两个交点;

②如果当x≤1时,yx的增大而减小,则m=1

③如果将它的图象向左平移3个单位后过原点,则m=1

④如果当x=2时的函数值与x=8时的函数值相等,则m=5.

其中一定正确的结论是_______.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且ODE的面积是12,则k=(  )

A. 6 B. 9 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰梯形ABCD放置在平面坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.

(1)求点C的坐标和反比例函数的解析式;

(2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】折纸与证明﹣﹣﹣用纸折出黄金分割点:

第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.

第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AGGD

查看答案和解析>>

同步练习册答案