【题目】在直角坐标系中,已知抛物线(a<0)与x轴交于A、B两点(点A在点B左侧),与y轴负半轴交于点C,顶点为D,已知:S四边形ACBD=1:4.
(1)求点D的坐标(用仅含c的代数式表示);
(2)若tan∠ACB=,求抛物线的解析式.
【答案】(1)D(2,);(2)抛物线的解析式为:,或,或.
【解析】
(1)直接代入顶点坐标公式化简即可;
(2)先由:S四边形ACBD=1:4,得到等底三角形的面积之比:=1:3,而求出,解析式化为,求得A(1,0),B(3,0),过点B作的延长线于点H,得到∽,依据相似的性质、锐角三角函数,用c表示AH、BH,最后在三角形ABH中依据勾股定理求出c,即可得到解析式.
解:(1)抛物线的顶点D的坐标为,
∴顶点D的坐标为(2,);
(2)∵与y轴负半轴交于点C,
∴C(0,c),,
过点D作轴于点G,则
∵:S四边形ACBD=1:4,
∴:=1:3,
则,即,
∴,
∴抛物线的解析式为:或,=,,
∴令=0,解得
∴A(1,0),B(3,0),,
过点B作的延长线于点H,
∴(对顶角相等),
∴∽,tan∠ACB==,,
∴,即,
∴,
∴,
∴,
∴,
∴=0,()
∴-1或-3或-2+(舍)或-2-,
∴抛物线的解析式为:,或,或.
科目:初中数学 来源: 题型:
【题目】抛物线 (为常数)与轴交于点和与轴交于点,点为抛物线顶点.
(Ⅰ)当时,求点,点的坐标;
(Ⅱ)①若顶点在直线上时,用含有的代数式表示;
②在①的前提下,当点的位置最高时,求抛物线的解析式;
(Ⅲ)若,当满足值最小时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形中,、分别为、的中点,连接、,和交于点.
(1)如图1,求证:;
(2)如图2,作关于对称的图形,连接,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于正方形面积的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.
(1)试判断四边形ABCD的形状,并给出证明;
(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.
(3)若EG=2,GF=3,BM=2,求AG、MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象交x轴于A、B两点,交y轴于点D,点B的坐标为,顶点C的坐标为.
求二次函数的解析式和直线BD的解析式;
点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;
在抛物线上是否存在异于B、D的点Q,使中BD边上的高为?若存在求出点Q的坐标;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中(如图),已知抛物线经过点,与轴交于点,,抛物线的顶点为点,对称轴与轴交于点.
(1)求抛物线的表达式及点的坐标;
(2)点是轴正半轴上的一点,如果,求点的坐标;
(3)在(2)的条件下,点是位于轴左侧抛物线上的一点,如果是以为直角边的直角三角形,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,对角线AC、BD交于O点,DE∥AC,CE∥BD.
(1)求证:四边形OCED为矩形;
(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形的顶点,动点,同时从点出发,点沿射线方向以每秒个单位的速度运动,点沿线段方向以每秒个单位的速度运动,当点到达点时,点,同时停止运动,连接,设运动时间为(秒).
(1)求证;
(2)当点运动到点时,若双曲线的图象恰好过点,试求的值;
(3)连接,当为何值时,为等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com