精英家教网 > 初中数学 > 题目详情
13.如图,在矩形纸片ABCD中,AB=2,点E在边AD上,沿BE折叠点落在矩形内部的A'处,再把矩形沿EF折叠,使点D落在AC边上的点D'处,旦点E、A'、D'在同一直线上,求AD的最小值.

分析 如图,作EH⊥BC于H.设AE=x,则易知ED=ED′=BD′,设ED=BDED′=y,在Rt△EHD′中,y2=22+(y-x)2,可得y=$\frac{4+{x}^{2}}{2x}$=$\frac{2}{x}$+$\frac{1}{2}$x,
∴AD=x+y=$\frac{3}{2}$x+$\frac{2}{x}$≥2$\sqrt{\frac{3}{2}x•\frac{2}{x}}$由此即可解决问题.

解答 解:如图,作EH⊥BC于H.设AE=x,则易知ED=ED′=BD′,设ED=BDED′=y,
在Rt△EHD′中,y2=22+(y-x)2
∴y=$\frac{4+{x}^{2}}{2x}$=$\frac{2}{x}$+$\frac{1}{2}$x,
∴AD=x+y=$\frac{3}{2}$x+$\frac{2}{x}$≥2$\sqrt{\frac{3}{2}x•\frac{2}{x}}$,(a+b≥2$\sqrt{ab}$,a>0,b>0)
∴AD≥2$\sqrt{3}$,
∴AD的最小值为2$\sqrt{3}$.

点评 本题考查翻折变换、勾股定理、矩形的性质、不等式的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,记住a+b≥2$\sqrt{ab}$,a>0,b>0,这个基本不等式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,AB是⊙O的直径,点C是半圆上的一个动点,OD平分∠AOC交⊙O于点D,过点D作DE∥AC交BA的延长线于点E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的直径AB=4,∠AOC=120°,请在备用图上画出符合条件的图形,并求四边形ACDE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在△ABC中,BD是边AC上的中线,E是BC的中点,连接DE.如果△BDE的面积为2,那么△ABC的面积为8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.完成下列推理过程
已知:△ABC,求证:∠A+∠B+∠C=180°
证明:延长BC到D,作CM∥AB
∴∠A=∠2(两直线平行,内错角相等)
∠B=∠1(两直线平行,同位角相等)
∵∠2+∠1+∠ACB=180° (平角的定义)
∴∠A+∠B+∠ACB=180°(等量代换).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知,如图,四边形ABCD是平行四边形,⊙O与边DC相切于点D,交对角线AC于点E,连接DE并延长交AB的延长线于点F,且AE=DE.
(1)求证:AD=AF;
(2)若tan∠CDE=$\frac{3}{4}$,AE=5,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.有这样一个问题:探究方程x3-x-2=0的实数根的个数.
小芳想起了曾经解决的一个问题:通过函数图象探究方程x2+3x-1=0的实数根的个数,她想到了如下的几个方法:
方法1:方程x2+3x-1=0的根可以看作是抛物线y=x2+3x-1与直线y=0(即x轴)交点的横坐标;这两个图象的交点个数即是方程x2+3x-1=0的实数根的个数.
方法2:将方程变形成x2=-3x+1,那么方程x2+3x-1=0的根也可以看作是抛物线y=x2与直线y=-3x+1交点的横坐标;这两个图象的交点个数即是方程x2+3x-1=0的实数根的个数.
方法3:由于x≠0,将方程变形成x+3=$\frac{1}{x}$,那么方程x2+3x-1=0的根也可以看作是直线y=x+3与双曲线y=$\frac{1}{x}$交点的横坐标;这两个图象的交点个数即是方程x2+3x-1=0的实数根的个数.
她类比上述方法,借助函数图象的交点个数对方程x3-x-2=0的实数根的个数进行了探究.
下面是小芳的探究过程,请补充完成:
(1)x=0不是方程x3-x-2=0的根;(填”是”或”不是”)
(2)方程x3-x-2=0的根可以看作是函数y=x2-1与函数y=$\frac{2}{x}$的图象交点的横坐标;
(3)在同一坐标系中画出两个函数的图象;
(4)观察图象可得,方程x3-x-2=0的实数根的个数是1个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(5,3)、B(5,1).
(1)在图中标出△ABC外心D的位置,并直接写出它的坐标;
(2)判断△ABC的外接圆D与x轴、y轴的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,直线l与⊙O相切于点A,点P在直线l上,直线PO交⊙O于点B,C,OD⊥AB,垂足为D,交PA于点E.
(1)判断直线BE与⊙O的位置关系,并说明理由;
(2)若PB=OB=6,求$\widehat{AC}$的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知直线y=ax+b与x轴,y轴交于A,B两点,点C的坐标为(a,b).
(1)若点A的坐标为(3,0),点B的坐标为(0,-3),则点C的坐标为(1,-3);
(2)若点D是线段OA的中点,点E的坐标为(1,0),且CE∥BD.点C在直线y=-4x上.
①求直线y=ax+b的解析式;
②点P为直线y=-4x上一点,当S△PAB=$\frac{3}{2}$S△COE时,直接写出点P坐标.

查看答案和解析>>

同步练习册答案