精英家教网 > 初中数学 > 题目详情
已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长;
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.

【答案】分析:(1)△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积实际是大扇形OAC与小扇形BPP′的面积差,且这两个扇形的圆心角同为90度;
(2)连接PP′,证△PBP′为等腰直角三角形,从而可在Rt△PP′C中,用勾股定理求得PC=6;
(3)将△PAB绕点B顺时针旋转90°到△P′CB的位置,由勾股逆定理证出∠P′CP=90°,再证∠BPC+∠APB=180°,即点P在对角线AC上.
解答:解:(1)①S阴影=S扇形ABC+S△BP′C-S扇形PBP′-S△ABP
=S扇形ABC-S扇形PBP′
=
=(a2-b2);

②连接PP′,
根据旋转的性质可知:
BP=BP′,∠PBP′=90°;
即:△PBP′为等腰直角三角形,
∴∠BPP′=45°,
∵∠BPA=∠BP′C=135°,∠BP′P=45°,
∴∠BPA+∠BPP′=180°,
即A、P、P′共线,
∴∠PP′C=135°-45°=90°;
在Rt△PP′C中,PP′=4,P′C=PA=2,根据勾股定理可得PC=6.

(2)将△PAB绕点B顺时针旋转90°到△P′CB的位置,连接PP′.
同(1)①可知:△BPP′是等腰直角三角形,即PP′2=2PB2
∵PA2+PC2=2PB2=PP′2
∴PC2+P′C2=PP′2
∴∠P′CP=90°;
∵∠PBP′=∠PCP′=90°,在四边形BPCP′中,∠BP′C+∠BPC=180°;
∵∠BPA=∠BP′C,
∴∠BPC+∠APB=180°,即点P在对角线AC上.
点评:本题是一道综合性很强的题,不但考查了扇形的面积公式,还综合了旋转及三角形、正方形等相关知识,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过精英家教网程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长;
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:点P是正方形内一点,△ABP旋转后能与△CBE重合.
(1)△ABP旋转的旋转中心是什么旋转了多少度?
(2)若BP=3,求PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:点P是正方形ABCD内的一点,连接PA、PB、PC.
(1)如图1.若PA=2,PB=4,∠APB=135°,求PC的长.
(2)如图2,若PA2+PC2=2PB2,试说明点P必在对角线AC上.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图).
(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图中阴影部分)的面积;
(2)若PA=2,PB=4,∠APB=135°,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,点Q是正方形ABCD内的一点,连QA、QB、QC.
(I)将△QAB绕点B顺针旋转90°到△Q'CB的位置(如图①所示).若QA=1,QB=2,∠AQB=135°,求QC的长.
(II)如图②,若QA2+QC2=2QB2,请说明点Q必在对角线AC上.
精英家教网

查看答案和解析>>

同步练习册答案