精英家教网 > 初中数学 > 题目详情

【题目】广州中学在“读书日”期间购进一批图书, 需要用大小两种规格的纸箱来装运.个大纸箱和个小纸箱一次可以装,本书个大纸箱和个小纸箱--次可以装本书.

(1)一个大纸箱和一个小纸箱分别可以装多少本书?

(2)如果一共购入本书,每个纸箱恰好装满,分别需要用多少个大、小纸箱?

【答案】1)一个大纸箱可以装30本书,一个小纸箱可以装20本书;(2)共有2种装书方案.用5个小纸箱;用2个大纸箱,2个小纸箱.

【解析】

1)设一个大纸箱可以装x本书,一个小纸箱分别可以装y本书,根据1个大纸箱和1个小纸箱一次可以装50本书,2个大纸箱和3个小纸箱一次可以装120本书列方程组求解即可;

2)设需m个大纸箱,n个小纸箱,根据一共购入100本书列二元一次方程求解即可

1)设一个大纸箱可以装x本书,一个小纸箱可以装y本书·依题意,

得:

解得·

答:一个大纸箱可以装30本书,一个小纸箱可以装20本书.

2)设需要用m个大纸箱,n个小纸箱,

依题意,得:30m+20n100.

mn均为正整数,

∴共有2种装书方案.用5个小纸箱不用大纸箱或用2个大纸箱,2个小纸箱.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,过点AAHBC,分别交BDBC于点EHFED的中点,∠BAF120°,则∠C的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠C30°,过DDEBC于点E,延长CB至点F,使BFCE,连接AF.若AF4CF10,则ABCD的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,FG为出口,其中直行道为ABCGEF,且ABCGEF;弯道为以点O为圆心的一段弧,且所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以8m/s的速度行驶,从不同出口驶出,其间两车到点O的距离ym)与时间xs)的对应关系如图2所示,结合题目信息,下列说法错误的是(

A.立交桥总长为168 m

B.F口出比从G口出多行驶48m

C.甲车在立交桥上共行驶11 s

D.甲车从F口出,乙车从G口出

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“全民防控新冠病毒”期间某公司推出一款消毒产品,成本价8/千克,经过市场调查,该产品的日销售量(千克)与销售单价(元/千克)之间满足一次函数关系,该产品的日销售量与销售单价几组对应值如表:

销售单价(元/千克)

12

16

20

24

日销售量(千克)

220

180

140

(注:日销售利润日销售量(销售单价成本单价)

1)求关于的函数解析式(不要求写出的取值范围);

2)根据以上信息,填空:

_______千克;

②当销售价格_______元时,日销售利润最大,最大值是_______元;

3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1500元,试确定该产品销售单价的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象与轴交于两点,与轴交于点,点在直线上,横坐标为

1)确定二次函数的解析式;

2)如图1时,交二次函数的图象于点的面积记作为何值时的值最大,并求出的最大值;

3)如图2,过点轴的平行线交二次函数的图象于点与点关于直线对称是否存在点使四边形为菱形,若存在直接写出的值;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,抛物线y轴交于点B,与x轴交于点AC(点A在点C的左侧),A-10),C40),连接ABBC,点y轴负半轴上的一点,连接AG并延长交抛物线于点E,点D为线段AE上的一个动点,过点Dy轴的平行线交抛物线于点F,与线段BC交于点N

1)求抛物线的表达式及直线BC的表达式;

2)在点D运动的过程中,当FN的值最大时,在线段BC上是否存在一点H,使得FNHABC相似,如果存在,求出此时H点的坐标;

3)当DF=4时,连接DC,四边形ABCD先向上平移一定单位长度后,使点D落在x轴上,然后沿x轴向左平移n1n4)个单位长度,用含n的表达式表示平移后的四边形与原四边形重叠部分的面积S(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“扶贫攻坚”活动中,某单位计划选购甲,乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.求甲,乙两种物品的单价各多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了增强学生的疫情防控意识,响应“停课不停学”号召,某校组织了一次“疫情防控知识”专题网上学习,并进行了一次全校2500名学生都参加的网上测试.阅卷后,教务处随机抽取了100份答卷进行分析统计,发现考试成绩(分)的最低分为51分,最高分为满分100分,并绘制了如下不完整的统计图表.请根据图表提供的信息,解答下列问题:

分数段(分)

频数(人)

频率

0.1

18

0.18

35

0.35

12

0.12

合计

100

1

1)填空:________________________

2)将频数分布直方图补充完整;

3)该校对成绩为的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为,请你估算全校获得二等奖的学生人数;

4)结合调查的情况,为了提高疫情防控意识,请你给学校提一条合理性建议.

查看答案和解析>>

同步练习册答案