精英家教网 > 初中数学 > 题目详情
7.解方程:$\frac{2}{x-1}$=$\frac{3}{2x-2}$+1,请用运算律和运算法则说明你求解的合理性.

分析 先两边都乘以2(x-1)化为整式方程,然后再根据整式方程的解法求解.

解答 解:方程两边都乘以2(x-1)得,
4=3+2(x-1),
去括号得,4=3+2x-2,
移项得,-2x=3-2-4,
合并同类项得,-2x=-3,
系数化为1得,x=1.5,
检验:当x=1.5时,2(x-1)=2×(1.5-1)=1≠0,
故原方程解是x=1.5.

点评 本题主要考查了分式方程的解法,方程两边都乘以最简公分母化为整式方程是解题的关键,注意要检验.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.如图,矩形ABCD中放有六个形状、大小相同的长方形(即空白区域),则图中阴影部分的面积是72cm2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图所示,四边形ABCO为平行四边形,点A、B在反比例函数y1=$\frac{{k}_{1}}{x}$图象上,点A(5,2),边BC与y轴交于点D且D为BC中点,点C在反比例函数y2=$\frac{{k}_{2}}{x}$图象上,则k2的值为-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.等边△ABC内接于⊙O,点D在$\widehat{AC}$上,连接AD,CD,BD,BD交AC边于点E.
(1)如图1,求证:∠ADB=∠BDC=60°;
(2)如图2,若BD=3CD,求证:AE=2CE;
(3)在(2)的条件下,连接OE,若BE=14,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知m是$\sqrt{7}$的小数部分,n是$\sqrt{17}$的整数部分.求:
(1)(m-n)2的值;
(2)$\frac{m+n}{2}$+m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若x2-y2=12,x+y=3,则x-y=4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,抛物线y=-$\frac{1}{4}$x2+2x的顶点为M,与x轴交于0,A两点,点P(a,0)是线段0A上一动点(不包括端点),过点P作y轴的平行线,交直线y=$\frac{1}{5}$x于点B,交抛物线于点C,以BC为一边,在BC的右侧作矩形BCDE,若CD=2,则当矩形BCDE与△0AM重叠部分为轴对称图形时,a的取值范围是$\frac{16+2\sqrt{31}}{5}$或$\frac{16-2\sqrt{31}}{5}$或5≤a<$\frac{20}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,同心圆O中,大圆半径OA、OB分别交小圆于D、C,OA⊥OB,若四边形ABCD的面积为50,则图中阴影部分的面积为75π.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.标准足球场是一个长方形,其长为105米,宽为68米,它的面积的万分之一大约有(  )
A.一只手掌心大B.一本数学课本大C.一张教师讲台大D.一个教室大

查看答案和解析>>

同步练习册答案