【题目】如图,在中,,点为的平分线上一点,连接、.
(1)求证:;
(2)若,,求的度数.
【答案】(1)见解析;(2)
【解析】
(1)由OA平分∠BAC可知∠BAO=∠CAO,由SAS即可证明△BAO≌△CAO,从而得出结论.
(2)由(1)可知∠OAC=∠OAB=23°,由OA=OC可知∠OAC=∠OCA=23°,由三角形外角性质可知∠COB=2∠OAC+2∠OAB=2∠BAC即可解答.
证明:(1)平分,
,
,,
,
;
(2)由(1)得∴∠BAO=∠CAO=∠BAC,OB=OC,
∵OA=OC,
∴OA=OB=OC,
∴∠OAC=∠OCA=∠BAO=∠OBA=23°,
∵∠COB=∠OAC+∠OCA+∠BAO+∠OBA=2∠BAC=92°.
∴∠OCB=(180°92°)÷2=44°
科目:初中数学 来源: 题型:
【题目】某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AB=1,AD=2,动点M、N分别从顶点A、B同时出发,且分别沿着AD、BA运动,点N的速度是点M的2倍,点N到达顶点A时,则两点同时停止运动,连接BM、CN交于点P,过点P分别作AB、AD的垂线,垂足分别为E、F,则线段EF的最小值为( )
A.B.﹣1C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.
(2)类比思考:
如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.
(3)深入研究:
如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABC、DEF进行探究活动.
操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DE与AC或其延长线交于点K,线段BC与DF相交于点G(如图2,3).
探究1:在图2中,求证:△ADK∽△BGD.
探究2:在图2中,求证:KD平分∠AKG.
探究3:
①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.
②在以上操作过程中,若设AC=BC=8,KG=x,△DKG的面积为y,请求出y与x的函数关系式,并直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段AB=9,点C为线段AB上一点,AC=3,点D为平面内一动点,且满足CD=3,连接BD将BD绕点D逆时针旋转90到DE,连接BE、AE,则AE的最大值为 ________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com