【题目】如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于( )
A.60°B.75°C.70°D.90°
【答案】A
【解析】
根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.
∵AB=BC=CD=DE=EF
∠A=15°
∴∠BCA=∠A=15°
∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°
∴∠BCD=180°(∠CBD+∠BDC)=180°60°=120°
∴∠ECD=∠CED=180°∠BCD∠BCA=180°120°15°=45°
∴∠CDE=180°(∠ECD+∠CED)=180°90°=90°
∴∠EDF=∠EFD=180°∠CDE∠BDC=180°90°30°=60°
∴∠DEF=180°(∠EDF+∠EFC)=180°120°=60°
故选A.
科目:初中数学 来源: 题型:
【题目】已知如图,在 ABC 中,BAC 90° ,分别过顶点 B、C 作 A 点的直线的垂线垂足分别为 D、E,试探究线段 BD、CE、DE 之间的关系.
(1)当直线 DE 绕点 A 旋转至如图 1 的位置,直接写出 BD、CE、DE 之间的数量 为 ;
(2)当直线 DE 绕点 A 旋转至如图 2 的位置,直接写出 BD、CE、DE 之间的数量 为 ;
(3)当直线 DE 绕点 A 旋转至如图 3 的位置,写出 BD、CE、DE 之间的数量,并证明 你的结论;
(4)如图 4,如果将 ABC 放在直角坐标系中,若点 A 的坐标为(-1,1),求 OB-OC 的 值.请写出必要的解答步骤.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,求∠BCE的度数;
(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE的度数;
(3)设∠BAC=α,∠BCE=β,如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为 度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点D,E,F分别是△ABC的边AB,AC,BC上的点,DE∥BC,DF∥AC.
(1)如图1,点G是线段FD延长线上一点,连接EG,∠CEG的平分线EM交AB于点M,交FD于点N.则∠A,∠AME,∠CEG之间存在怎样的数量关系?请写出证明过程;
(2)如图2,在(1)的条件下,若EG平分∠AED,∠AME=35°,且∠EDF﹣∠A=30°,求∠C的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知长方形ABCD中,∠A=∠D=∠B=∠C=90,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm.
(1)求证:AF=DE.
(2)若AD+DC=18,求AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com