精英家教网 > 初中数学 > 题目详情

【题目】如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于(

A.60°B.75°C.70°D.90°

【答案】A

【解析】

根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.

AB=BC=CD=DE=EF

A=15°

∴∠BCA=A=15°

∴∠CBD=BDC=BCA+A=15°+15°=30°

∴∠BCD=180°(CBD+BDC)=180°60°=120°

∴∠ECD=CED=180°BCDBCA=180°120°15°=45°

∴∠CDE=180°(ECD+CED)=180°90°=90°

∴∠EDF=EFD=180°CDEBDC=180°90°30°=60°

∴∠DEF=180°(EDF+EFC)=180°120°=60°

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,PA=PB,∠PAM+PBN=180°,求证:OP平分∠AOB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在 ABC 中,BAC 90° ,分别过顶点 BC A 点的直线的垂线垂足分别为 DE,试探究线段 BDCEDE 之间的关系.

(1)当直线 DE 绕点 A 旋转至如图 1 的位置,直接写出 BDCEDE 之间的数量

(2)当直线 DE 绕点 A 旋转至如图 2 的位置,直接写出 BDCEDE 之间的数量

(3)当直线 DE 绕点 A 旋转至如图 3 的位置,写出 BDCEDE 之间的数量,并证明 你的结论;

(4)如图 4,如果将 ABC 放在直角坐标系中,若点 A 的坐标为(-1,1), OB-OC .请写出必要的解答步骤.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,E为弦AC的延长线上一点,DE与⊙O相切于点D,且DEAC,连结OD,若AB=10,AC=6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.

(1)如图1,当点D在线段BC上,如果∠BAC=90°,求∠BCE的度数;

(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE的度数;

(3)设∠BAC=α,∠BCE=β,如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在已知的ABC,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MNAB于点D,连接CD.CD=AC,A=50°,则∠ACB的度数为(  )

A. 90°B. 95°C. 100°D. 105°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC∠BAC=54°∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EFEBC上,FAC上)折叠,点C与点O恰好重合,则∠OEC   度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点DEF分别是△ABC的边ABACBC上的点,DEBCDFAC

1)如图1,点G是线段FD延长线上一点,连接EG,∠CEG的平分线EMAB于点M,交FD于点N.则∠A,∠AME,∠CEG之间存在怎样的数量关系?请写出证明过程;

2)如图2,在(1)的条件下,若EG平分∠AED,∠AME35°,且∠EDF﹣∠A30°,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知长方形ABCD中,∠A=D=B=C=90,EAD上的一点,FAB上的一点,EFEC,且EFECDE=4cm.

(1)求证:AF=DE.

(2)AD+DC=18,求AE的长.

查看答案和解析>>

同步练习册答案