精英家教网 > 初中数学 > 题目详情
精英家教网如图,在相距60km的两个城镇A,B之间,有一近似圆形的湖泊,其半径为15km,圆心O恰好位于A、B连线的中点处.现要绕过湖泊从A城到B城,假设除湖泊外,所有的地方均可行走,如路线:线段AC→弧CD→线段DB,其中C、D在直线AB上.则最短的行走路线的长度是
 
分析:可分别过点A,B作圆的切线,求解AE,BF与弧EF即为最短路径.
解答:精英家教网解:如图,分别过点A,B作圆的切线AE,BF,连接OE,OF,
由题意,则AB=60,又圆半径为15,即OF=15,OB=30,
∴∠B=30°,同理,∠A=30°,∴∠EOF=60°
∴弧EF=
1
3
CD弧=
1
3
×15π=5πkm
∴在Rt△AOE中,AE=
3
OE=15
3
km,同理,BF=15
3
km,
∴最短行走路径为(5π+30
3
)km.
点评:此题涉及的知识点有:切线和直角三角形的性质、弧长的计算,找出此题的最短路径是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在相距60km的两个城镇A,B之间,有一近似圆形的湖泊,其半径为15km,圆心O恰好位于A,B连线的中点处.现要绕过湖泊从A城到B城,假设除湖泊外,所有的地方均可行走,如路线:线段AC→
CD
线段DB,其中C,D在直线A精英家教网B上.请你找出最短的行走路线,并求出这条路线的长度.(
3
≈1.73,π≈3.14)

查看答案和解析>>

科目:初中数学 来源:鄂尔多斯 题型:解答题

如图,在相距60km的两个城镇A,B之间,有一近似圆形的湖泊,其半径为15km,圆心O恰好位于A,B连线的中点处.现要绕过湖泊从A城到B城,假设除湖泊外,所有的地方均可行走,如路线:线段AC→


CD
线段DB,其中C,D在直线A
精英家教网
B上.请你找出最短的行走路线,并求出这条路线的长度.(
3
≈1.73,π≈3.14)

查看答案和解析>>

科目:初中数学 来源:内蒙古自治区中考真题 题型:解答题

如图,在相距60km的两个城镇A,B之间,有一近似圆形的湖泊,其半径为15km,圆心O恰好位于A,B连线的中点处,现要绕过湖泊从A城到B城,假设除湖泊外,所有的地方均可行走,如路线:线段AC→→线段DB,其中C,D在直线AB上.请你找出最短的行走路线,并求出这条路线的长度。

查看答案和解析>>

科目:初中数学 来源:第5章《中心对称图形(二)》中考题集(68):5.8 弧长及扇形的面积(解析版) 题型:解答题

如图,在相距60km的两个城镇A,B之间,有一近似圆形的湖泊,其半径为15km,圆心O恰好位于A,B连线的中点处.现要绕过湖泊从A城到B城,假设除湖泊外,所有的地方均可行走,如路线:线段线段DB,其中C,D在直线AB上.请你找出最短的行走路线,并求出这条路线的长度.(≈1.73,π≈3.14)

查看答案和解析>>

同步练习册答案