精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列四个结论

①a、b同号
②当x=1和x=3时函数值相等
③4a+b=0
④当y=时x的值只能取0
其中正确的个数
A.1个B.2个C.3个D.4个
B.

试题分析:由函数图象可得:a<0,b>0,c<0,则
a、b异号,结论错误;
由于对称轴为直线x=2,当x=1和x=2时,函数值y相等,结论正确;
由于对称轴为直线,所以4a+b=0,结论正确;
y=2时,x的值可取0或4,结论错误.
综上所述, 正确的结论有②③2个.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心。

⑴求抛物线的解析式;
⑵求阴影部分的面积;
⑶在正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=K,△CPQ的面积为S,求S关于K的函数关系式,并求出S的最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角梯形中, , 高(如图1). 动点同时从点出发, 点沿运动到点停止, 点沿运动到点停止,两点运动时的速度都是1cm/s,而当点到达点时,点正好到达点. 设同时从点出发,经过的时间为(s)时, 的面积为 (如图2). 分别以为横、纵坐标建立直角坐标系, 已知点边上从运动时, 的函数图象是图3中的线段.

(图1)                      (图2)                (图3)
(1)分别求出梯形中的长度;
(2)分别写出点边上和边上运动时, 的函数关系式(注明自变量的取值范围), 并在图3中补全整个运动中关于的函数关系的大致图象.
(3)问:是否存在这样的t,使PQ将梯形ABCD的面积恰好分成1:6的两部分?若存在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,关于x的二次函数,(k为正整数).

(1)若二次函数的图象与x轴有两个交点,求k的值.
(2)若关于x的一元二次方程(k为正整数)有两个不相等的整数解,点A(m,y1),B(m+1,y2),C(m+2,y3)都在二次函数(k为正整数)图象上,求使y1≤y2≤y3成立的m的取值范围.
(3)将(2)中的抛物线平移,当顶点至原点时,直线y=2x+b交抛物线于A(-1,n)、B(2,t)两点,问在y轴上是否存在一点C,使得△ABC的内心在y轴上.若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于A(1,0)、B(-4,0)两点,交y轴与C点.

(1)求该抛物线的解析式.
(2)在该抛物线位于第二象限的部分上是否存在点D,使得△DBC的面积S最大?若存在,求出点D的坐标;若不存在,请说明理由.
(3)设抛物线的顶点为点F,连接线段CF,连接直线BC,请问能否在直线BC上找到一个点M,在抛物线上找到一个点N,使得C、F、M、N四点组成的四边形为平行四边形,若存在,请写出点M和点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

是二次函数,则m=      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax²-6ax+c(a>0)的图像抛物线过点C(0,4),设抛物线的顶点为D。

(1)若抛物线经过点(1,-6),求二次函数的解析式;
(2)若a=1时,试判断抛物线与x轴交点的个数;
(3)如图所示A、B是⊙P上两点,AB=8,AP=5。且抛物线过点A(x1,y1),B(x2,y2),并有AD=BD。设⊙P上一动点E(不与A、B重合),且∠AEB为锐角,若<a≤1时,请判断∠AEB与∠ADB的大小关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是二次函数图像的一部分,其对称轴是,且过点(-3,0),下列说法:①<0 ④若(-5,y1),(1,y2)是抛物线上两点,则,其中说法正确的是(   )
A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的顶点坐标是(      ) 
A.(2,1)B.(-2,-1)C.(-2,1)D.(2,-1)

查看答案和解析>>

同步练习册答案