精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点 .下列说法正确的是(  )
A.△ 与△ABC是位似图形,位似中心是点(1,0)
B.△ 与△ABC是位似图形,位似中心是点(0,0)
C.△ 与△ABC是相似图形,但不是位似图形
D.△ 与△ABC不是相似图形

【答案】B
【解析】解答:∵△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍 ∴点 的坐标分别为(2,4),(-4,6),(-2,0)
∴直线AA′,BB′,CC′得解析式分别为y=2x , y=- x , y=0
∴对应点的连线交于原点
∴△ 与△ABC是位似图形,位似中心是点(0,0)
故选:B.
分析:由已知条件△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,求得直线AA′,BB′,CC′得解析式分别为y=2x , y=- x , y=0,可知△ 与△ABC是位似图形,位似中心是点(0,0).此题考查了位似的相关知识,位似是相似的特殊形式,位似图形的对应点的连线交于一点.
【考点精析】掌握位似变换是解答本题的根本,需要知道它们具有相似图形的性质外还有图形的位置关系(每组对应点所在的直线都经过同一个点—位似中心).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知四点A,B,C,D,用圆规和无刻度的直尺按下列要求与步骤画出图形并计算:

(1)画直线AB;

(2)画射线DC;

(3)延长线段DA至点E,使AE=AB;(保留作图痕迹)

(4)画一点P,使点P既在直线AB上,又在线段CE上;

(5)AB=2cm,AD=1cm,求线段DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在正方形 ABCD E 是对角线 BD 上一动点,AE 的延长线交 CD 于点 F, BC 的延长线于点 G,M FG 的中点.

(1)求证DAE=DCE;

(2)判断线段 CE CM 的位置关系并证明你的结论

(3)并且恰好是等腰三角形时 DE 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设实数a,b,c满足a>b>c(ac<0),且|c|<|b|<|a|,则|x-a|+|x+b|+|x-c|的最小值为(

A. B. |b| C. a+b D. -c-a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知含字母m,n的代数式是: .

(1)化简这个代数式

(2)小明取m,n互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0.那么小明所取的字母n的值等于多少?

(3)聪明的小智从化简的代数式中发现,只要字母n取一个固定的数,无论字母m取何数,代数式的值恒为一个不变的数,那么小智所取的字母n的值是多少呢?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,DBC中点,BECF与射线AE分别相交于点EF(射线AE不经过点D).

(1)如图①,当BECF时,连接ED并延长交CF于点H. 求证:四边形BECH是平行四边形;

(2)如图②,当BEAE于点ECFAE于点F时,分别取ABAC的中点MN,连接MEMDNFND. 求证:∠EMD=∠FND.

图① 图②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD相交于点O,过点CCE∥BD,过点DDE∥ACCEDE相交于点E

1)求证:四边形CODE是矩形.

2)若AB=5AC=6,求四边形CODE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为(  )
A.12m
B.10m
C.8m
D.7m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,OE平分∠BOD.

(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.

(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.

查看答案和解析>>

同步练习册答案