精英家教网 > 初中数学 > 题目详情
5.先阅读,然后解方程组.
解方程组
$\left\{\begin{array}{l}{x-y-1=0①}\\{4(x-y)-y=5②}\end{array}\right.$  时,
可由 ①得x-y=1,③
然后再将③代入②得4×1-y=5,求得y=-1,
从而进一步求得$\left\{\begin{array}{l}{x=0①}\\{y=-1②}\end{array}\right.$ 这种方法被称为“整体代人法”,
请用这样的方法解下列方程组$\left\{\begin{array}{l}{2x-3y-2=0}\\{\frac{2x-3y+5}{7}+2y=9}\end{array}\right.$.

分析 仿照所给的题例先把①变形,再代入②中求出y的值,进一步求出方程组的解即可.

解答 解:$\left\{\begin{array}{l}{2x-3y-2=0①}\\{\frac{2x-3y+5}{7}+2y=9②}\end{array}\right.$,
由①得,2x-3y=2③,
代入②得$\frac{2+5}{7}$+2y=9,
解得y=4,
把y=4代入③得,2x-3×4=2,
解得x=7.
故原方程组的解为$\left\{\begin{array}{l}{x=7}\\{y=4}\end{array}\right.$.

点评 本题考查的是在解二元一次方程组时整体思想的应用,利用整体思想可简化计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.在平面直角坐标系中,A(a,0),B(12,b),C(0,b)且$\sqrt{\frac{1}{2}a-4}$+(b-6)2=0,线段PQ=7.
(1)写出A,B,C三点的坐标.
(2)若线段PQ在x轴上移动,当CP平分∠BCO时,此时OP=OC,作∠CQA邻补角的平分线交直线CP于点E,请你在答题卷画出图形,并探求∠PEQ与∠OCQ数量关系.
(3)若线段PQ在y轴上移动,是否存在三角形ABP的面积是三角形ABQ的面积的2倍?若存在直角写出P、Q两点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某校七年级(1)班、(2)班为地震灾区共捐衣服60件.已知(1)班捐的衣服数量是(2)班的2倍少15件.求两个班分别捐了多少件衣服?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,P为∠AOB内一点,OC=m(m为正数),过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.C为射线OA上任一点,连结CP并延长交OB于N点

(1)若∠AOB=60°,OQ:OM:MC=1:4:2,探索CN、ON、OC之间的数量关系并加以证明.
(2)当点P在边∠AOB的平分线上运动时,问:$\frac{1}{OM}$-$\frac{1}{ON}$的值是否发生变化?如果变化,指出该值随m的变化情况;如果不变,请说明理由.
(3)在(2)的条件下,二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x-1012
y-1355
若m的值是关于x的方程ax2+(b-1)x+c=0中较大的根,菱形OMPQ的面积为S1,△NOC的面积为S2,求$\frac{{S}_{1}}{{S}_{2}}$的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知正方形ABCD的边长为4,点E,F分别在边BC、CD上,∠EAF=45°,若AE•AF=$\frac{40\sqrt{2}}{3}$,则EF的长为$\frac{10}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=16cm,BC=22cm,点P从点A出发,以1cm/s的速度向点D运动,点Q从点C同时出发,以3cm/s的速度沿射线CB运动,当点P运动到点D时停止运动,设运动时间为t秒.
(1)当t为多少时,以A、B、Q、P为顶点的四边形成为平行四边形?
(2)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式. 比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2

(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使它的边长分别为(2a+b)、(a+2b),不画图形,试通过计算说明需要C类卡片多少张;
(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使它的面积等于a2+5ab+4b2,画出这个长方形,并根据图形对多项式a2+5ab+4b2进行因式分解;
(3)如图③,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案并判断,将正确关系式的序号填写在横线上①②③④(填写序号).
①xy=$\frac{{m}^{2}-{n}^{2}}{4}$      ②x+y=m   ③x2-y2=m•n     ④x2+y2=$\frac{{m}^{2}+{n}^{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:
成绩454647484950
人数124251
这此测试成绩的中位数和众数分别为(  )
A.47,49B.48,49C.47.5,49D.48,50

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B两点(点A在点B的左侧),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)当点P在线段OB上运动时,求线段MN的最大值;
(3)是否存在点P,使得以点C、O、M、N为顶点的四边形是平行四边形?若存在,请直接写出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案