分析 首先由勾股定理求出BC和CD,再利用三角形相似就可以求出结论,由条件把AM、AN用含x的式子表示出来,由勾股定理把MN表示出来解答即可.
解答 解:∵∠BAC=90°,
∴∠B+∠C=90°,
∵AD是BC边上的高,
∴∠DAC+∠C=90°
∴∠B+∠DAC=90°,
∴∠BDM+∠MDA=∠ADN+∠MDA=90°
∴∠BDM=∠ADN,
∴△BMD∽△AND,
∴$\frac{DM}{DN}=\frac{BD}{AD}$,
∵$\frac{DB}{AD}=cotB=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}$,
∴DM:DN=$\frac{3}{4}$,
∵△BMD∽△AND,
∴$\frac{BM}{AN}=\frac{BD}{AD}=\frac{3}{4}$∴,
∴AN=$\frac{4}{3}$BM∴,
设BM为x,
∴AN=$\frac{4}{3}x$,AM=6-x,
∵∠BAC=90°,
∴MN2=(6-x)2+($\frac{4}{3}$x)2=($\frac{5}{3}x-\frac{18}{5}$)2+$\frac{576}{25}$,
故MN的最小值是$\sqrt{\frac{576}{25}}=\frac{24}{5}$,
故答案为:$\frac{24}{5}$.
点评 此题考查相似三角形的性质,关键是利用勾股定理得出BC和CD,再将AM、AN用含x的式子表示出来,利用二次函数的最值计算即可.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
运输量单价[元/(吨•千米)] | 冷藏费单价[元/(吨•时)] | 过路过桥费(元) |
2 | 5 | 200 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (2014,2) | B. | (2014,-2) | C. | (2012,-2) | D. | (2012,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com