精英家教网 > 初中数学 > 题目详情

【题目】某学校初一年级参加社会实践课,报名第一门课的有x人,第二门课的人数比第一门课的 少20人,现在需要从报名第二门课的人中调出10人学习第一门课,那么:
(1)报两门课的共有多少人?
(2)调动后,报名第一门课的人数为人,第二门课人数为人.
(3)调动后,报名第一门课比报名第二门课多多少人?计算出代数式后,请选择一个你觉得合适的x的值代入,并求出具体的人数.

【答案】
(1)解:∵第二门课的人数比第一门课的 少20人,

∴第二门课的人数为: x﹣20

∴两门课的人数为:x+ x﹣20=


(2)(x+10);( x﹣30)
(3)解:调动后,第一门课比第二门课多了:(x+10)﹣( x﹣30)= x+40;

当x=40时, x+40=48


【解析】解:(2)由题意可知,第一门课多了10人,第二门课少了10人,
∴调动后,第一门课的人数为:x+10;第二门课的人数为: x﹣30,所以答案是:(2)x+10; .根据题中给出的等量关系即可列出式子

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若一个正多边形的一个外角等于18°,则这个正多边形的边数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请认真观察图形,解答下列问题:
(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);

(2)由(1),你能得到怎样的等量关系?请用等式表示;
(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.
证明:DE=BD+CE.

(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

(3)拓展与应用:如图(3),D,E是D,A,E三点所在直线m上的两动点(D,A, E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.
求证:AF=EC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2PAC上的一个动点.

(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;

(2)当点P在运动过程中出现PDBC时,求此时∠PDA的度数;

(3)当点P运动到什么位置时,以DPBQ为顶点的平行四边形的顶点Q恰好在边BC上?求出此时□DPBQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意解答
(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D.
(2)阅读下面的内容,并解决后面的问题: 如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.
解:∵AP、CP分别平分∠BAD、∠BCD
∴∠1=∠2,∠3=∠4
由(1)的结论得:
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P= (∠B+∠D)=26°.
①如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.
②在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.
③在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).

(1)求该抛物线所对应的函数关系式;

(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.

①求S关于m的函数关系式及自变量m的取值范围;

②当m为何值时,S有最大值,并求这个最大值;

③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案