精英家教网 > 初中数学 > 题目详情
10.甲、乙两家樱桃采摘园的品质相同,销售价格也相同,“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.
(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30元;
(2)求y1、y2与x的函数表达式;
(3)在图中画出y1与x的函数图象,若某人想在“五一期间”采摘樱桃25千克,那么甲、乙哪个采摘园较为优惠?请说明理由.

分析 (1)根据单价=总价÷数量,即可求出甲、乙两采摘园优惠前的草莓销售价格;
(2)根据数量关系结合函数图象,即可求出y1、y2与x的函数表达式;
(3)画出y1与x的函数图象,再将x=25分别代入y1、y2中求出y值,比较后即可得出结论.

解答 解:(1)300÷10=30(元/千克).
故答案为:30.
(2)根据题意得:y1=30×0.6x+50=18x+50;
当0≤x≤10时,y2=30x;
当x>10时,y2=300+$\frac{450-300}{20-10}$(x-10)=15x+150.
∴y1=18x+50,y2=$\left\{\begin{array}{l}{30x(0≤x≤10)}\\{15x+150(x>10)}\end{array}\right.$.
(3)画出y1与x的函数图象,如图所示.
当x=25时,y1=18x+50=500,y2=15x+150=525,
∵500<525,
∴选择甲采摘园较为优惠.

点评 本题考查了一次函数的应用,解题的关键是:(1)根据单价=总价÷数量,求出甲、乙两采摘园优惠前的草莓销售价格;(2)根据数量关系结合函数图象找出y1、y2与x的函数表达式;(3)将x=25分别代入y1、y2中求出y值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx-5与x轴交于A、B两点(点A在点B的左侧),与y轴交点为C,直线y=-x-2经过点A,交抛物线于点D,交y轴于点E,连接CD,并且∠ADC=45°.
(1)求抛物线的解析式;
(2)过点A的直线AF与抛物线的另一个交点为F,sin∠BAF=$\frac{\sqrt{5}}{5}$,求点F的坐标;
(3)在(2)的条件下,点P是直线AF下方抛物线上一点,过点P作PQ⊥AF垂足为Q,若PE=EQ,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:($\frac{1}{2}$)-2-6sin30°-(π+2017)0+$\sqrt{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在矩形ABCD中,对角线AC、BD相交于O,AC=2AB,则∠AOB的度数为60°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若一次函数y=-2x+b的图象与直线y=2x-1的交点在第四象限,则b的取值范围是-1<b<1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.阅读下列材料,完成相应学习任务.
问题:如图是一个由5个相同的正方形组成的十字形的纸片,把这一纸片沿一条直线截成两部分,然后把其中的一部分再沿着另一条直线截成两部分,使所得的三部分纸片通过适当的拼接能组成两个并列的全等的正方形,请在图中画出分割线及拼接后的图形.
分析:若设拼成的正方形的边长为x,十字形纸片中每个小正方形的边长为1,则2x2=5.解得x=$\frac{\sqrt{10}}{2}$,所以拼成的两个小正方形的边长为$\frac{\sqrt{10}}{2}$.如图(2)连接AB,根据勾股定理得AB=$\sqrt{10}$,所以AB的长度为所要拼成的两个小正方形边长的2倍,于是可得图(2)所示的拼法.
请你参考材料中思考问题的方法,解决下列问题:
图(3)、图(4)是由边长为1的小正方形组成的网格图,平行四边形ABCD的四个顶点均在格点上,请将图中的平行四边形ABCD进行适当的剪拼,使得分割后的各部分能拼成符合要求的新图形.
要求:
(1)在图(3)、图(4)中画出分割线及拼接后的图形,所拼接的各部分之间不能互相重叠,不能留有空隙;
(2)图(3)中拼出的图形是等腰三角形,图(4)中拼出的图形是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:$\sqrt{9}$+($\sqrt{2}$-1)0-|-3|.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=$\frac{k}{x}$(k≠0)的图象恰好经过点A′,B,则k的值为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.延庆区古崖居景区游览线路如图,右图是利用平面直角坐标系画出的沿途景点的大致分布示意图,这个坐标系分别以正东、正北方向为x轴、y轴的正方向,如果表示龙爪石的点的坐标为(1,3),表示古崖老井点的坐标为(2,-2),那么这个平面直角坐标系的原点所在位置是(  )
A.山泉B.鱼池C.飞来石D.石碾

查看答案和解析>>

同步练习册答案