精英家教网 > 初中数学 > 题目详情
如图,已知等边三角形ABC的边长为10,点P、Q分别为边AB、AC上的一个动点,点P从点B出发以1cm/s的速度向点A运动,点Q从点C出发以2cm/s的速度向点A运动,连接PQ,以Q为旋转中心,将线段PQ按逆时针方向旋转60°得线段QD,若点P、Q同时出发,则当运动
10
3
10
3
s时,点D恰好落在BC边上.
分析:设当运动t秒时,线段PQ按逆时针方向旋转60°得线段QD此时点D恰好落在BC边上,则BP=t,CQ=2t,根据旋转的性质得到QP=QD,∠PQD=60°,则∠AQP+∠CQD=120°,
根据等边三角形的性质可得到∠A=60°,∠C=60°,则∠AQP+∠APQ=120°,得到∠APQ=∠CQD,易证得△APQ≌△CQD,则有AP=CQ,得到t+2t=10,解方程即可.
解答:解:设当运动t秒时,线段PQ按逆时针方向旋转60°得线段QD,此时点D恰好落在BC边上,则BP=t,CQ=2t,
如图,
∴QP=QD,∠PQD=60°,
∴∠AQP+∠CQD=120°,
又∵△ABC为等边三角形,
∴∠A=60°,∠C=60°,
∴∠AQP+∠APQ=120°,
∴∠APQ=∠CQD,
∴△APQ≌△CQD,
∴AP=CQ,
∴BP+CQ=AB,
∴t+2t=10,
∴t=
10
3
(s).
故答案为
10
3
点评:本题考查了等边三角形的性质:等边三角形的三边都相等,三个角都为60°.也考查了旋转的性质以及三角形全等的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).
(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;
(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD,QAE和RAB,求证:P、Q、R是等边三角形的三个顶点.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知等边三角形△AEC,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.
(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.
(2)证明:△BEF∽△ABC,并求出相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等边三角形△AEC,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.请猜测直线BE和直线AC的位置关系,并证明你的猜想.

查看答案和解析>>

同步练习册答案