分析 (1)根据图形数出对角线条数即可;
(2)根据n边形从一个顶点出发可引出(n-3)条对角线即可求解;
(3)由(2)可知,任意凸n边形的对角线有条$\frac{n(n-3)}{2}$,即可解答;
(4)由(3)把n=12代入计算即可.
解答 解:(1)根据图形数出对角线条数,一个四边形有2条对角线,一个五边形有5条对角线,一个六边形有9对角线,一个七边形有14对角线;
故答案为:9;14.
(2)n边形从一个顶点出发可引出(n-3)条对角线,若允许重复计数,共可作n(n-3)条对角线;
故答案为:(n-3);n(n-3).
(3)由(2)可知,任意凸n边形的对角线有条$\frac{n(n-3)}{2}$,故答案为:$\frac{n(n-3)}{2}$.
(4)把n=12代入$\frac{n(n-3)}{2}$计算得:$\frac{12×9}{2}$=54.
故答案为:54.
点评 本题考查了多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}+1}{{x}^{2}-1}$ | B. | $\frac{x+1}{x^2}$ | C. | $\frac{x-1}{{x}^{2}+1}$ | D. | $\frac{{x}^{2}}{x+1}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 3 | C. | $\sqrt{3}$或3$\sqrt{3}$ | D. | 2$\sqrt{3}$或3$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com