精英家教网 > 初中数学 > 题目详情
(2012•济南)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是(  )
分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.
解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:
①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×
1
3
=4,物体乙行的路程为12×
2
3
=8,在BC边相遇;
②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×
1
3
=8,物体乙行的路程为12×2×
2
3
=16,在DE边相遇;
③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×
1
3
=12,物体乙行的路程为12×3×
2
3
=24,在A点相遇;

此时甲乙回到原出发点,则每相遇三次,两点回到出发点,
∵2012÷3=670…2,
故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×
1
3
=8,物体乙行的路程为12×2×
2
3
=16,在DE边相遇;
此时相遇点的坐标为:(-1,-1),
故选:D.
点评:此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•济南)如图,直线a∥b,直线c与a,b相交,∠1=65°,则∠2=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济南)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济南)如图,已知双曲线y=
kx
经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济南)如图1,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.
(1)求抛物线的解析式;
(2)求cos∠CAB的值和⊙O1的半径;
(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.

查看答案和解析>>

同步练习册答案