精英家教网 > 初中数学 > 题目详情
在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边作如图所示的正方形CDEF,连接AF并延长交x轴的正半轴于点B,连精英家教网接OF,设OD=t.
(1)tan∠AOB=
 
,tan∠FOB=
 

(2)用含t的代数式表示OB的长;
(3)当t为何值时,△BEF与△OFE相似?
分析:(1)根据A点坐标,易求得tan∠AOB=1,则∠AOB=45°,△COD是等腰直角三角形,即CD=OD=DE,因此tan∠FOB=
1
2

(2)过A作AM⊥x轴于M,则AM=OM=2,可用t分别表示出OE、ME、EF的长,通过证△BEF∽△BMA,根据所得比例线段即可求出BE的表达式,进而可得到OB的表达式.
(3)要分两种情况进行讨论:
①∠FOE=∠FBE,此时△BFE≌△OFE,可得出OE=BE,那么OB=2OE=4OD,再根据(2)的结果即可得出t的值;②∠OFE=∠FBE,此时EF2=OE•BE,据此可表示出BE的长,而后仿照①的解法求出t的值.
解答:解:(1)1(2分),
1
2
(4分);

(2)过点A作AM⊥x轴于M,则OM=AM=2;
∵OD=t,
∴OE=2t,ME=2t-2,EF=t;精英家教网
由于EF∥AM,则有△BEF∽△BMA,得:
BE
BM
=
EF
AM
,即
BE
BE+2t-2
=
t
2

解得:BE=
2t2-2t
2-t

故OB=OE+BE=2t+
2t2-2t
2-t
=
2t
2-t
.(8分)

(3)本题分两种情况:
①∠FOE=∠FBE,则有△BFE≌△OFE
∴OE=BE=2t
∴OB=4t=
2t
2-t

解得t=
3
2

②∠OFE=∠FBE,由于△BFE∽△OFE,可得:
EF2=OE•BE,即t2=2t•BE,
∴BE=
t
2

∴OB=OE+BE=2t+
1
2
t=
5
2
t.
∴OB=
2t
2-t
=
5
2
t,
解得t=
6
5

综上所述,当t=
6
5
3
2
时,△BEF与△OFE相似.
点评:此题主要考查了正方形的性质以及相似三角形的判定和性质;要注意的是(3)题中,一定要根据相似三角形的不同对应边分类讨论,同时还要注意t的取值范围,以免造成漏解或多解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△精英家教网OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,若设AC=x,请用x表示线段AD的长.
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时直线EF∥直线BO?这时⊙F和直线BO相切的位置关系如何?请给予说明.
(4)G为CD与⊙F的交点,H为直线DF上的一个动点,连接HG、HC,求HG+HC的最小值,并将此最小值用x表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、在直角坐标系中,O为坐标原点,已知点A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t.
(1)求tan∠FOB的值;
(2)用含t的代数式表示△OAB的面积S;
(3)是否存在点B,使以B,E,F为顶点的三角形与△OFE相似?若存在,请求出所有满足要求的B点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,矩形AOBC在直角坐标系中,O为原点,A在x轴上,B在y轴上,直线AB的函数关系式为y=-
43
x+8
,M是OB上的一点,若将梯形AMBC沿AM折叠,点B恰好落在x轴上的精英家教网点B′处,C的对应点为C′.
(1)求出B′点和M点的坐标;
(2)求直线A C′的函数关系式;
(3)设一动点P从A点出发,以每秒1个单位速度沿射线AB方向运动,过P作PQ⊥AB,交射线AM于Q;
①求运动t秒时,Q点的坐标;(用含t的代数式表示)
②以Q为圆心,以PQ的长为半径作圆,当t为何值时,⊙Q与y轴相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,O为坐标原点,△ABO是正三角形,若点B的坐标是(-2,0),则点A的坐标是
(-1,
3
),(-1,-
3
)
(-1,
3
),(-1,-
3
)

查看答案和解析>>

同步练习册答案