【题目】如图,在平面直角坐标系中,为坐标原点.一次函数的图象与x轴交于点,与y轴交于点B,与正比例函数的图象交于点.
(1)求一次函数的解析式;
(2)在x轴上寻找点P,使得为等腰三角形,直接写出所有满足条件的点P的坐标;
(3)在直线AB上寻找点Q,使得,求点Q的坐标.
【答案】(1)一次函数的解析式为;(2)点P的坐标为或或或;(3)点Q的坐标为或.
【解析】
(1)可先求得C点坐标,再利用待定系数法可求得一次函数的表达式;
(2)可设P(x,0),则可表示出CP、OP和OC,分CP=OP、CP=OC和OP=OC三种情况,分别得到关于x的方程,可求得P点的坐标;
(3)可设出Q点的坐标,从而可表示出CQ的长,由三角形的面积可得到关于Q点坐标的方程,可求得Q点的坐标.
(1)∵正比例函数的图象过点,
∴,
∴点C的坐标为.
设直线AB的解析式为,
把A,C两点的坐标代入可得,解得,
∴一次函数的解析式为.
(2)设P点坐标为,C点坐标为,
∴,,.
∵为等腰三角形,
∴有,和三种情况:
①当时,即,
解得:,此时点P的坐标为;
②当时,即,
解得:(舍去)或,此时点P的坐标为;
③当时,即,解得或,
此时点P的坐标为或.
综上所述,点P的坐标为或或或.
(3)∵点Q在直线AB上,
∴设点Q的坐标为.
∵点C的坐标为,
∴.
∵在中,令可得,
∴点B的坐标为,∴,
∴,且.
如图,过点O作于点D,
∴,即,
解得:,
.
,
∴,解得或.
当时, ,
当时,.
故点Q的坐标为或.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中, AD是∠BAC的平分线,DF⊥AB,DM⊥AC,垂足分别为F、M,AF=10cm ,BF=6cm ,AC=14cm.动点E以3cm/s的速度从A点向B点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t s.当t=__________s时, △DFE与△DMG全等.(写出符合题意的t的所有取值)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长度为( )
A.cmB.1cmC.2cmD.cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图7,在四边形ABCD中,AB=BC,∠ABC=60°,E是CD边上一点,连接BE,以BE为一边作等边三角形BEF.请用直尺在图中连接一条线段,使图中存在经过旋转可完全重合的两个三角形,并说明这两个三角形经过什么样的旋转可重合.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,
(1)指出旋转中心和旋转角度;
(2)求DE的长度;
(3)BE与DF的位置关系如何?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在1~7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是( )
A. 1月份 B. 2月份
C. 5月份 D. 7月份
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( ).
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动。今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.
(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;
(2)求扇形统计图B等级所对应扇形的圆心角度数;
(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( )
捐款数额 | 10 | 20 | 30 | 50 | 100 |
人数 | 2 | 4 | 5 | 3 | 1 |
A. 众数是100 B. 中位数是30 C. 极差是20 D. 平均数是30
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com