分析 (1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;
(2)由函数的解析式组成方程组,解之求得A、C的坐标,然后根据S△AOC=S△ODA+S△ODC即可求出;
(3)根据图象即可求得.
解答 解:(1)设A点坐标为(x,y),且x<0,y>0,
则S△ABO=$\frac{1}{2}$•|BO|•|BA|=$\frac{1}{2}$•(-x)•y=$\frac{3}{2}$,
∴xy=-3,
又∵y=$\frac{k}{x}$
即xy=k,
∴k=-3.
∴所求的两个函数的解析式分别为y=-$\frac{3}{x}$,y=-x+2;
(2)由y=-x+2,
令x=0,得y=2.
∴直线y=-x+2与y轴的交点D的坐标为(0,2),
∵A、C在反比例函数的图象上,
∴$\left\{\begin{array}{l}{y=-x+2}\\{y=-\frac{3}{x}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{1}=-1}\\{{y}_{2}=3}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=3}\\{{y}_{2}=-1}\end{array}\right.$,
∴交点A为(-1,3),C为(3,-1),
∴S△AOC=S△ODA+S△ODC=$\frac{1}{2}$OD•(|x1|+|x2|)=$\frac{1}{2}$×2×(3+1)=4;
(3)关于x的不等式$x+(k+1)+\frac{k}{x}≤0$的解集是:x≤-1或0<x≤3.
点评 此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.也考查了函数和不等式的关系.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com