精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.
分析:连接BD,取BD的中点G,连接MG,NG,根据三角形的中位线的性质,易得∠1=∠GNM,∠2=∠GME,再由AB=CD可得MG=NG,进而求得∠1=∠2.
解答:精英家教网解:连接BD,取BD的中点G,连接MG,NG
∵G、N、M均为中点,
∴GN是△ADB的AB对的中位线,GM是△BCD的CD对的中位线,
∴NG∥AB,NG=
1
2
AB,GM∥CD,GM=
1
2
CD,
∴∠1=∠GNM,∠2=∠GME,
又∵AB=CD,
∴MG=NG.
∴∠GNM=∠GME.
∴∠1=∠2.
点评:本题利用了三角形的中位线的性质求解,有中点常构造中位线,连BD是构造中位线的基本图形,连AC也可以.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系.要求:(1)、(2)直接写出结论,(3)、(4)写出结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为圆O的直径,AC为弦,OD∥BC交AC于D,OD=2cm,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB=AC,BD⊥AC,试说明∠BAC=2∠CBD.

查看答案和解析>>

同步练习册答案