精英家教网 > 初中数学 > 题目详情
12.如图,AO=BO=2,∠AOB=90°,△A′、C、D分别与点A重合,在边BO上、在边BO的延长线上,且A′C=A′D=$\sqrt{5}$,将△A′CD沿射线OB平移,设平移距离为x(其中0<x<3),平移后的图形与△ABO重叠部分的面积为S.
(1)求tanD的值;
(2)求S关于x的函数关系式,并写出x的取值范围.

分析 (1)勾股定理求出OD,再根据正切函数定义可得;
(2)分0<x≤1和1<x<3两种情况,当0<x≤1时,设A′C与AB相交于点P,作PQ⊥BO于点Q,设A′D与AB相交于点M,与AO相交于点N,作MR⊥AO于点R,设PQ=h,MR=h′,解直角三角形分别得出CQ=$\frac{1}{2}$h、AR=h′、RN=MRtan∠RMN=h′tan(90°-∠MNR)=h′tan(90°-∠DNO)=h′tanD=2h′,由PQ=BQtanB=BQ即h=(1-x)+$\frac{1}{2}$h,得h=2(1-x),AN=AO-ON=2-ODtanD=2-2(1-x)=2x及AR+RN=AN得h′=$\frac{2}{3}$x,最后根据S=S△ABO-S△PBC-S△AMN可得函数解析式;当1<x<3时,设A′D与AB相交于点P,作PQ⊥BO于点Q,同理得BQ=PQ即3-x=h+$\frac{1}{2}$h,得h=$\frac{2}{3}$(3-x),根据三角形面积公式可得此时函数解析式.

解答 解:(1)如图1,

∵∠AOB=90°,
∴OD=$\sqrt{A{D}^{2}-A{O}^{2}}$=$\sqrt{5-{2}^{2}}$=1,
∴tanD=$\frac{AO}{OD}$=$\frac{2}{1}$=2;

(2)如图1,同理,OC=1,tan∠A′CD=2,tan∠BAO=tanB=1,
当0<x≤1时,如图2,

设A′C与AB相交于点P,作PQ⊥BO于点Q,设A′D与AB相交于点M,与AO相交于点N,作MR⊥AO于点R,
设PQ=h,MR=h′,
在Rt△PCQ中,PQ=CQtan∠PCQ,得CQ=$\frac{1}{2}$h,
在Rt△PBQ中,PQ=BQtanB=BQ,即h=(1-x)+$\frac{1}{2}$h,得h=2(1-x),
在Rt△AMR中,MR=ARtan∠BAO=AR,即AR=h′,
在Rt△MNR中,RN=MRtan∠RMN=h′tan(90°-∠MNR)=h′tan(90°-∠DNO)=h′tanD=2h′,
∵AN=AO-ON=2-ODtanD=2-2(1-x)=2x,
AR+RN=AN,即h′+2h′=2x,得h′=$\frac{2}{3}$x,
∴S=S△ABO-S△PBC-S△AMN
=$\frac{1}{2}$AO×BO-$\frac{1}{2}$BC×PQ-$\frac{1}{2}$AN×MR
=$\frac{1}{2}$×2×2-$\frac{1}{2}$×(1-x)×2(1-x)-$\frac{1}{2}$×2x×$\frac{2}{3}$x
=-$\frac{5}{3}$x2+2x+1;
当1<x<3时,如图3,设A′D与AB相交于点P,作PQ⊥BO于点Q,

设PQ=h,同理得BQ=PQ,
∴3-x=h+$\frac{1}{2}$h,
得h=$\frac{2}{3}$(3-x),
∴S=$\left\{\begin{array}{l}{-\frac{5}{3}{x}^{2}+2x+1}&{(0<x≤1)}\\{\frac{1}{3}{x}^{2}-2x+3}&{(1<x<3)}\end{array}\right.$.

点评 本题主要考查二次函数的应用,熟练掌握解直角三角形和解方程的能力求出所需线段的长度及割补法求三角形的面积是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知:△ABC.
(1)求作:△ABC的外接圆,请保留作图痕迹;
(2)至少写出两条作图的依据.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.某银行规定:客户定期存款到期后,客户如不前往银行办理转存手续,银行会自动将到期的存款本息按相同存期一并转存,不受次数限制,续存期利率按前期到期日的利率计算.某人在2014年10月24日在此银行存入一年定期存款若干元.存款年利率为3%.2015年10月24日.该客户没有前往该银行办理转存手续,且该银行一年定期存款年利率于当日调整为1.5%.若该客户在2016年10月24日到银行取出该笔存款,可得到利息909元,则该客户在2014年10月24日存入的本金为(  )
A.16000元B.18000元C.20000元D.22000元

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某企业有员工300人,生产A种产品,平均每人每年可创造利润m万元(m为大于零的常数).为减员增效,决定从中调配x人去生产新开发的B种产品.根据评估,调配后,继续生产A种产品的员工平均每人每年创造的利润可增加20%,生产B种产品的员工平均每人每年可创造利润1.54m万元.
(1)调配后,企业生产A种产品的年利润为1.2(300-x)m 万元,企业生产B种产品的年利润为1.54mx 万元(用含x和m的代数式表示).若设调配后企业全年总利润为y万元,则y关于x的函数解析式为y=360m+0.34mx.
(2)若要求调配后,企业生产A种产品的年利润不小于调配前企业年利润的$\frac{4}{5}$,生产B种产品的年利润大于调配前企业年利润的$\frac{1}{2}$,应有哪几种调配方案?请设计出来,并指出其中哪种方案全年总利润最大(必要时,运算过程可保留3个有效数字).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若$\frac{1}{a}$>a,则a的取值范围是0<a<1或a<-1..

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,用长120cm的木条制成如图形状的矩形框(矩形框中间有一横档).设矩形框的宽AB为x(cm),所围成的面积为S(cm2).
(1)求S关于x的函数表达解析式和自变量x的取值范围;
(2)要使矩形框的面积为594cm2,则AB的长为多少;
(3)能围成面积比594cm2更大的矩形框吗?如果能,求出最大面积,并说明围法;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A,B,C,D把原正方形分割成一些三角形(互相不重叠):

(1)填写表:
正方形ABCD内点的个数1234
分割成的三角形的个数46810
(2)若用y表示内部有n个点时正方形ABCD被分割成的三角形的个数,试写出y=2(n+1)(用含有n的代数式表示,n是正整数);
(3)正方形ABCD能否被分割成2016个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在Rt△ABC中,∠ACB=90°,AC=3,tanB=$\frac{4}{3}$,求AB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.分解因式:
(1)3m2-6mn+3n2
(2)a-4ab2

查看答案和解析>>

同步练习册答案