精英家教网 > 初中数学 > 题目详情
(2009•成都)如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.
(1)判断OG与CD的位置关系,写出你的结论并证明;
(2)求证:AE=BF;
(3)若OG?DE=3(2-),求⊙O的面积.
【答案】分析:(1)根据G是CD的中点,利用垂径定理证明即可;
(2)先证明△ACE与△BCF全等,再利用全等三角形的性质即可证明;
(3)构造等弦的弦心距,运用相似三角形以及勾股定理进行求解.
解答:(1)解:猜想OG⊥CD.
证明:如图,连接OC、OD,
∵OC=OD,G是CD的中点,
∴由等腰三角形的性质,有OG⊥CD.

(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,
而∠CAE=∠CBF(同弧所对的圆周角相等),
在Rt△ACE和Rt△BCF中,
∵∠ACE=∠BCF=90°,AC=BC,∠CAE=∠CBF,
∴Rt△ACE≌Rt△BCF(ASA).
∴AE=BF.

(3)解:如图,过点O作BD的垂线,垂足为H,则H为BD的中点.
∴OH=AD,即AD=2OH,
又∠CAD=∠BAD?CD=BD,∴OH=OG.
在Rt△BDE和Rt△ADB中,
∵∠DBE=∠DAC=∠BAD,
∴Rt△BDE∽Rt△ADB,
,即BD2=AD•DE.

又BD=FD,∴BF=2BD,
①,
设AC=x,则BC=x,AB=
∵AD是∠BAC的平分线,
∴∠FAD=∠BAD.
在Rt△ABD和Rt△AFD中,
∵∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD,
∴Rt△ABD≌Rt△AFD(ASA).
∴AF=AB=,BD=FD.
∴CF=AF-AC=
在Rt△BCF中,由勾股定理,得
②,
由①、②,得
∴x2=12,解得(舍去),

∴⊙O的半径长为
∴S⊙O=π•(2=6π.
点评:熟练运用垂径定理、勾股定理、相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《反比例函数》(04)(解析版) 题型:填空题

(2009•成都)如图,正方形OABC的面积是4,点B在反比例函数y=(k>0,x<0)的图象上.若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S,则当S=m(m为常数,且0<m<4)时,点R的坐标是    .(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前30天冲刺得分专练18:综合测试(解析版) 题型:填空题

(2009•成都)如图,正方形OABC的面积是4,点B在反比例函数y=(k>0,x<0)的图象上.若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S,则当S=m(m为常数,且0<m<4)时,点R的坐标是    .(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前30天冲刺得分专练15:坐标与图形的位置及变换 (解析版) 题型:填空题

(2009•成都)如图,正方形OABC的面积是4,点B在反比例函数y=(k>0,x<0)的图象上.若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S,则当S=m(m为常数,且0<m<4)时,点R的坐标是    .(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源:2009年四川省成都市中考数学试卷(解析版) 题型:填空题

(2009•成都)如图,正方形OABC的面积是4,点B在反比例函数y=(k>0,x<0)的图象上.若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S,则当S=m(m为常数,且0<m<4)时,点R的坐标是    .(用含m的代数式表示)

查看答案和解析>>

同步练习册答案