精英家教网 > 初中数学 > 题目详情
如图,已知在ADRtDABC斜边BC的高,ÐB的平分线交AD于点M,交AC于点EÐDAC的平分线交CD于点N,求证:四边形AMNE是菱形。

 

答案:
解析:

证明:由AD^BCÐBAC=90°,BE平分ÐABC,得AM=AE

AN平分ÐDAC,∴ AN^MEMO=EO。从而可得AO=ON

四边形AMNE是菱形。

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,已知:AD是△ABC中BC边的中线,则S△ABD=S△ACD,依据是
等底等高的三角形面积相等

规定;若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积直线.根据此定义,在图1中易知直线为△ABC的等积直线.
(1)如图2,在矩形ABCD中,直线l经过AD,BC边的中点M、N,请你判断直线l是否为该矩形的等积直线
(填“是”或“否”).在图2中再画出一条该矩形的等积直线.(不必写作法)
(2)如图3,在梯形ABCD中,直线l经过上下底AD、BC边的中点M、N,请你判断直线l是否为该梯形的等积直线
(填“是”或“否”).
(3)在图3中,过M、N的中点O任作一条直线PQ分别交AD,BC于点P、Q,如图4所示,猜想PQ是否为该梯形的等积直线?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,已知:AD是BC上的中线,E点在AD延长线上,且DF=DE.
求证:BE∥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知:AD是△ABC中BC边的中线,则S△ABD=S△ACD,依据是______
规定;若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积直线.根据此定义,在图1中易知直线为△ABC的等积直线.
(1)如图2,在矩形ABCD中,直线l经过AD,BC边的中点M、N,请你判断直线l是否为该矩形的等积直线______(填“是”或“否”).在图2中再画出一条该矩形的等积直线.(不必写作法)
(2)如图3,在梯形ABCD中,直线l经过上下底AD、BC边的中点M、N,请你判断直线l是否为该梯形的等积直线______(填“是”或“否”).
(3)在图3中,过M、N的中点O任作一条直线PQ分别交AD,BC于点P、Q,如图4所示,猜想PQ是否为该梯形的等积直线?请说明理由.

查看答案和解析>>

科目:初中数学 来源:河北省期中题 题型:探究题

(1)如图,已知:AD是△ABC中BC边的中线,则S△ABD=S△ACD,依据是                 
规定:若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积直线。根据此定义,在图1中易知直线为△ABC的等积直线。
(2)如图2,在矩形ABCD中,直线l经过AD,BC边的中点M. N,请你判断直线l是否为该矩形的等积直线?            (填“是”或“否”)。在图2中再画出一条该矩形的等积直线。(不必写作法)
(3)如图3,在梯形ABCD中,直线l经过上下底AD. BC边的中点M. N,请你判断直线l是否为该梯形的等积直线?             (填“是”或“否”)。
 (4)在图3中,过M. N的中点O任作一条直线PQ分别交AD,BC于点P. Q,如图4所示,猜想PQ是否为该梯形的等积直线?请说明理由

查看答案和解析>>

同步练习册答案