精英家教网 > 初中数学 > 题目详情

已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.
(1)求抛物线的函数解析式;
(2)求抛物线的对称轴和C点的坐标.

(1)抛物线的解析式是:y=x2+2x;(2)对称轴为直线x=-1,C(-1,-1).

解析试题分析:(1)已知图象上的三点,求抛物线的解析式,一般都是用待定系数法,设抛物线的解析式为y=ax2+bx+c,将三个点的坐标分别带入抛物线的解析式,得到一个三元一次方程组,解这个方程组,求出系数a、b、c,从而得到抛物线解析式.(2)要求抛物线的对称轴和顶点坐标,一般地,都是将抛物线解析式配方,然后求得抛物线的对称轴和顶点.
试题解析:(6分)(1)设抛物线的解析式为y=ax2+bx+c(a≠0),
将点A(﹣2,0),B(﹣3,3),O(0,0),代入可得:
解得:
故函数解析式为:y=x2+2x.
(2)对称轴为直线x=-1,C(-1,-1).
考点:二次函数的图象.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知:抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.

(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).

(1)求抛物线的解析式;
(2)求抛物线与x轴的交点坐标;
(3)画出这条抛物线大致图象;
(4)根据图象回答:
①当x取什么值时,y>0 ?
②当x取什么值时,y的值随x的增大而减小?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线y=3x和y=2x分别与直线x=2相交于点A、B,将抛物线y=x2沿线段OB移动,使其顶点始终在线段OB上,抛物线与直线x=2相交于点C,设△AOC的面积为S,求S的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点,直线L与抛物线交于A、C两点,其中C点的横坐标为2.

(1)求抛物线的解析式及直线AC的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y1=-x2+3与x轴交于A、B两点,与直线y2=-x+b相交于B、C两点.

(1)求直线BC的解析式和点C的坐标;
(2)若对于相同的x,两个函数的函数值满足y1≥y2,则自变量x的取值范围是     

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与直线交于C,D两点,其中点C在y轴上,点D的坐标为。点P是y轴右侧的抛物线上一动点,过点P作轴于点E,交CD于点F.

(1)求抛物线的解析式;
(2)若点P的横坐标为m,当m为何值时,以O,C,P,F为顶点的四边形是平行四边形?请说明理由。
(3)若存在点P,使,请直接写出相应的点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).

(1)求抛物线l的解析式(用含m的式子表示);
(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;
(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.

查看答案和解析>>

同步练习册答案