【题目】阅读:在用尺规作线段等于线段时,小明的具体做法如下:
已知:如图,线段.
求作:线段,使得线段.
作法: ① 作射线;
② 在射线上截取.
∴线段为所求.
解决下列问题:
已知:如图,线段.
(1)请你仿照小明的作法,在上图中的射线上作线段,使得;(不要求写作法和结论,保留作图痕迹)
(2)在(1)的条件下,取的中点.若,求线段的长.(要求:第(2)问重新画图解答)
科目:初中数学 来源: 题型:
【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为40,并把条形统计图补充完整;
(2)扇形统计图中m=10,n=20,表示“足球”的扇形的圆心角是72度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把解相同的两个方程称为同解方程.例如:方程:与方程的解都为,所以它们为同解方程.
(1)若方程与关于的方程是同解方程,求的值;
(2)若关于的方程和是同解方程,求的值;
(3)若关于的方程和是同解方程,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)
(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是_____;
(2)根据(1)中的结论,若x+y=5,xy=,则x﹣y=______;
(3)若(3x﹣2y)2=5,(3x+2y)2=9,求xy的值.
(4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有什么发现?_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).
(1)证明:OB=OC.
(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变.
(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有 人,在扇形统计图中,“乒乓球”的百分比为 %,如果学校有800名学生,估计全校学生中有 人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司去年年初投资1200万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元,按规定,该产品售价不得低于80元/件且不超过160元/件,该产品的年销售量y(万件)与产品售价x(元/件)之间的关系如图所示.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)求该公司去年所获利润的最大值;
(3)在去年获利最大的前提下,公司今年重新确定产品的售价,能否使去年和今年共获利1000万元?若能,请求出今年的产品售价;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富同学的课余生活,某学校将举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是________”的问卷调查,要求学生只能从“A(绿博园),B(人民公园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.
回答下列问题:
(1)本次共调查了多少名学生?
(2)补全条形统计图;
(3)若该学校共有3 600名学生,试估计该校去湿地公园的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列计算过程,猜想立方根.
=1 =8 =27 =64 =125 =216 =343 =512 =729
(1)小明是这样试求出19683的立方根的,先估计19683的立方根的个位数, 猜想它的个位数为 , 又由<19000< ,猜想19683的立方根十位数为 ,验证得19683的立方根是 .
(2)请你根据(1)中小明的方法,完成如下填空:
① = ; ②= ;③= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com