1£®¼ÆËã
£¨1£©£¨$\sqrt{48}$-$\sqrt{50}$+$\sqrt{75}}$£©£¨-$\sqrt{6}}$£©
£¨2£©$\sqrt{8}$-$\frac{1}{8}$$\sqrt{48}$-£¨$\frac{2}{3}$$\sqrt{4\frac{1}{2}}$-2$\sqrt{\frac{3}{4}}}$£©
£¨3£©£¨1+$\sqrt{2}}$£©2£¨1+$\sqrt{3}}$£©2£¨1-$\sqrt{2}}$£©2£¨1-$\sqrt{3}}$£©2
£¨4£©£¨$\sqrt{3}$-2$\sqrt{5}}$£©£¨$\sqrt{15}$+5£©-£¨$\sqrt{10}$-$\sqrt{2}}$£©2£®

·ÖÎö £¨1£©ÏȰѸ÷¶þ´Î¸ùʽ»¯¼òΪ×î¼ò¶þ´Î¸ùʽ£¬È»ºóºÏ²¢¼´¿É£»
£¨2£©ÏȰѸ÷¶þ´Î¸ùʽ»¯¼òΪ×î¼ò¶þ´Î¸ùʽ£¬È»ºóºÏ²¢¼´¿É£»
£¨3£©ÀûÓÃƽ·½²î¹«Ê½¼ÆË㣻
£¨4£©ÀûÓó˷½¹«Ê½Õ¹¿ª£¬È»ºóºÏ²¢¼´¿É£®

½â´ð ½â£º£¨1£©Ô­Ê½=£¨4$\sqrt{3}$-5$\sqrt{2}$+5$\sqrt{3}$£©•£¨-$\sqrt{6}$£©
=£¨9$\sqrt{3}$-5$\sqrt{2}$£©•£¨-$\sqrt{6}$£©
=-27$\sqrt{2}$+10$\sqrt{3}$£»
£¨2£©Ô­Ê½=2$\sqrt{2}$-$\frac{\sqrt{3}}{2}$-$\sqrt{2}$+$\sqrt{3}$
=$\sqrt{2}$+$\frac{\sqrt{3}}{2}$£»
£¨3£©Ô­Ê½=[£¨1+$\sqrt{2}$£©£¨1-$\sqrt{2}$£©]2•[£¨1+$\sqrt{3}$£©£¨1-$\sqrt{3}$£©]2
=£¨1-2£©2•£¨1-3£©2
=1¡Á4
=4£»
£¨4£©Ô­Ê½=3$\sqrt{5}$+5$\sqrt{3}$-10$\sqrt{3}$-10$\sqrt{5}$-£¨10-4$\sqrt{5}$+2£©
=3$\sqrt{5}$+5$\sqrt{3}$-10$\sqrt{3}$-10$\sqrt{5}$-10+4$\sqrt{5}$-2
=-3$\sqrt{5}$-5$\sqrt{3}$-12£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Î¸ùʽµÄ»ìºÏÔËË㣺ÏȰѸ÷¶þ´Î¸ùʽ»¯¼òΪ×î¼ò¶þ´Î¸ùʽ£¬È»ºó½øÐжþ´Î¸ùʽµÄ³Ë³ýÔËË㣬Ôٺϲ¢¼´¿É£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ò»¸ö¶þ´Îº¯ÊýµÄͼÏó¾­¹ý£¨0£¬0£©£¬£¨-1£¬-1£©£¬£¨1£¬9£©Èýµã£¬ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÇóͼÏóΪÏÂÁÐÅ×ÎïÏߵĶþ´Îº¯ÊýµÄ±í´ïʽ£º
£¨1£©Å×ÎïÏߵĶ¥µãÔÚÔ­µã£¬ÇÒÅ×ÎïÏß¾­¹ýµã£¨3£¬-27£©£»
£¨2£©Å×ÎïÏߵĶ¥µã×ø±êΪ£¨1£¬-2£©£¬ÇÒÅ×ÎïÏß¾­¹ýµã£¨2£¬3£©£»
£¨3£©Å×ÎïÏß¾­¹ýÈýµã£º£¨-1£¬2£©£¬£¨0£¬1£©£¬£¨2£¬-7£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬Ò»¿éÕý·½ÐεÄÌúƤ£¬±ß³¤Îªx cm£¨x£¾4£©£¬Èç¹ûÒ»±ß½ØÈ¥¿í4cmµÄÒ»¿é£¬ÏàÁÚÒ»±ß½ØÈ¥¿í3cmµÄÒ»¿é£®
£¨1£©ÇóÊ£Óಿ·Ö£¨ÒõÓ°£©µÄÃæ»ý£»
£¨2£©Èôx=8£¬ÔòÒõÓ°²¿·ÖµÄÃæ»ýÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èôan=3£¬bm=5£¬Çóa3n+b2mµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Çë°ÑÏÂÁи÷ÊýÌîÈëÏàÓ¦µÄ¼¯ºÏÖÐ
$\frac{1}{2}$£¬5.2£¬0£¬$\frac{2}{¦Ð}$£¬$\frac{22}{7}$£¬-4£¬-$\frac{5}{3}$£¬2005£¬-0.030030003¡­
ÕýÊý¼¯ºÏ£º{$\frac{1}{2}$£¬5.2£¬$\frac{2}{¦Ð}$£¬$\frac{22}{7}$£¬2005 ¡­}
·ÖÊý¼¯ºÏ£º{$\frac{1}{2}$£¬5.2£¬$\frac{22}{7}$£¬-$\frac{5}{3}$£¬ ¡­}
·Ç¸ºÕûÊý¼¯ºÏ£º{0£¬2005£¬¡­}
ÓÐÀíÊý¼¯ºÏ£º{$\frac{1}{2}$£¬5.2£¬0£¬$\frac{22}{7}$£¬-4£¬-$\frac{5}{3}$£¬2005£¬¡­}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®£¨1£©¼ÆËã-3+£¨-9£©=-12               
£¨2£©-8-£¨-18£©=10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®µ¥Ïîʽ-$\frac{3{x}^{4}y}{5}$µÄ´ÎÊýÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª£¬Èçͼ£¬?ABCDÖУ¬BC=8cm£¬CD=4cm£¬¡ÏB=60¡ã£¬µãM´ÓµãD³ö·¢£¬ÑØDA·½ÏòÔÈËÙÔ˶¯£¬ËÙ¶ÈΪ2cm/s£¬µãN´ÓµãB³ö·¢£¬ÑØBC·½ÏòÔÈËÙÔ˶¯£¬ËÙ¶ÈΪ1cm/s£¬¹ýM×÷MF¡ÍCD£¬´¹×ãÊÇF£¬ÑÓ³¤FM½»BAµÄÑÓ³¤ÏßÓÚµãE£¬ÉèÔ˶¯Ê±¼äΪt£¨s£©£¨0£¼t£¼4£©£¬½â´ðÏÂÁÐÎÊÌ⣺

£¨1£©µ±tΪºÎֵʱ£¬¡÷AEM¡Õ¡÷DFM£¿
£¨2£©Á¬½ÓAN£¬MN£¬Éè¡÷ANMµÄÃæ»ýΪy£¨cm2£©£¬ÇóyÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£»
£¨3£©ÊÇ·ñ´æÔÚijһʱ¿Ìt£¬Ê¹¡÷ANMµÄÃæ»ýÊÇ?ABCDÃæ»ýµÄ$\frac{3}{8}$£¿Èô´æÔÚ£¬Çó³öÏàÓ¦µÄtÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨4£©Á¬½ÓEN£¬½»ADÓÚµãO£¬µ±t=$\frac{8}{3}$Ãëʱ£¬ENÇ¡ºÃ´¹Ö±ÓÚAD£¬Á¬½ÓAC£¬½»ENÓÚµãQ£¬Çó´Ë¿ÌÏ߶ÎOQµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸